
Advanced Design System 2011.01 - Graphical Cell Compiler

1

Advanced Design System 2011.01

Feburary 2011
Graphical Cell Compiler

Advanced Design System 2011.01 - Graphical Cell Compiler

2

© Agilent Technologies, Inc. 2000-2011
5301 Stevens Creek Blvd., Santa Clara, CA 95052 USA
No part of this documentation may be reproduced in any form or by any means (including
electronic storage and retrieval or translation into a foreign language) without prior
agreement and written consent from Agilent Technologies, Inc. as governed by United
States and international copyright laws.

Acknowledgments
Mentor Graphics is a trademark of Mentor Graphics Corporation in the U.S. and other
countries. Mentor products and processes are registered trademarks of Mentor Graphics
Corporation. * Calibre is a trademark of Mentor Graphics Corporation in the US and other
countries. "Microsoft®, Windows®, MS Windows®, Windows NT®, Windows 2000® and
Windows Internet Explorer® are U.S. registered trademarks of Microsoft Corporation.
Pentium® is a U.S. registered trademark of Intel Corporation. PostScript® and Acrobat®
are trademarks of Adobe Systems Incorporated. UNIX® is a registered trademark of the
Open Group. Oracle and Java and registered trademarks of Oracle and/or its affiliates.
Other names may be trademarks of their respective owners. SystemC® is a registered
trademark of Open SystemC Initiative, Inc. in the United States and other countries and is
used with permission. MATLAB® is a U.S. registered trademark of The Math Works, Inc..
HiSIM2 source code, and all copyrights, trade secrets or other intellectual property rights
in and to the source code in its entirety, is owned by Hiroshima University and STARC.
FLEXlm is a trademark of Globetrotter Software, Incorporated. Layout Boolean Engine by
Klaas Holwerda, v1.7 http://www.xs4all.nl/~kholwerd/bool.html . FreeType Project,
Copyright (c) 1996-1999 by David Turner, Robert Wilhelm, and Werner Lemberg.
QuestAgent search engine (c) 2000-2002, JObjects. Motif is a trademark of the Open
Software Foundation. Netscape is a trademark of Netscape Communications Corporation.
Netscape Portable Runtime (NSPR), Copyright (c) 1998-2003 The Mozilla Organization. A
copy of the Mozilla Public License is at http://www.mozilla.org/MPL/ . FFTW, The Fastest
Fourier Transform in the West, Copyright (c) 1997-1999 Massachusetts Institute of
Technology. All rights reserved.

The following third-party libraries are used by the NlogN Momentum solver:

"This program includes Metis 4.0, Copyright © 1998, Regents of the University of
Minnesota", http://www.cs.umn.edu/~metis , METIS was written by George Karypis
(karypis@cs.umn.edu).

Intel@ Math Kernel Library, http://www.intel.com/software/products/mkl

SuperLU_MT version 2.0 - Copyright © 2003, The Regents of the University of California,
through Lawrence Berkeley National Laboratory (subject to receipt of any required
approvals from U.S. Dept. of Energy). All rights reserved. SuperLU Disclaimer: THIS
SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

http://www.xs4all.nl/~kholwerd/bool.html
http://www.xs4all.nl/~kholwerd/bool.html
http://www.mozilla.org/MPL/
http://www.mozilla.org/MPL/
http://www.cs.umn.edu/~metis
http://www.cs.umn.edu/~metis
http://www.intel.com/software/products/mkl
http://www.intel.com/software/products/mkl

Advanced Design System 2011.01 - Graphical Cell Compiler

3

ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

7-zip - 7-Zip Copyright: Copyright (C) 1999-2009 Igor Pavlov. Licenses for files are:
7z.dll: GNU LGPL + unRAR restriction, All other files: GNU LGPL. 7-zip License: This library
is free software; you can redistribute it and/or modify it under the terms of the GNU
Lesser General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This library is distributed
in the hope that it will be useful,but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details. You should have received a copy of the
GNU Lesser General Public License along with this library; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
unRAR copyright: The decompression engine for RAR archives was developed using source
code of unRAR program.All copyrights to original unRAR code are owned by Alexander
Roshal. unRAR License: The unRAR sources cannot be used to re-create the RAR
compression algorithm, which is proprietary. Distribution of modified unRAR sources in
separate form or as a part of other software is permitted, provided that it is clearly stated
in the documentation and source comments that the code may not be used to develop a
RAR (WinRAR) compatible archiver. 7-zip Availability: http://www.7-zip.org/

AMD Version 2.2 - AMD Notice: The AMD code was modified. Used by permission. AMD
copyright: AMD Version 2.2, Copyright © 2007 by Timothy A. Davis, Patrick R. Amestoy,
and Iain S. Duff. All Rights Reserved. AMD License: Your use or distribution of AMD or any
modified version of AMD implies that you agree to this License. This library is free
software; you can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either version 2.1 of
the License, or (at your option) any later version. This library is distributed in the hope
that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser
General Public License for more details. You should have received a copy of the GNU
Lesser General Public License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Permission is
hereby granted to use or copy this program under the terms of the GNU LGPL, provided
that the Copyright, this License, and the Availability of the original version is retained on
all copies.User documentation of any code that uses this code or any modified version of
this code must cite the Copyright, this License, the Availability note, and "Used by
permission." Permission to modify the code and to distribute modified code is granted,
provided the Copyright, this License, and the Availability note are retained, and a notice
that the code was modified is included. AMD Availability:
http://www.cise.ufl.edu/research/sparse/amd

UMFPACK 5.0.2 - UMFPACK Notice: The UMFPACK code was modified. Used by permission.
UMFPACK Copyright: UMFPACK Copyright © 1995-2006 by Timothy A. Davis. All Rights
Reserved. UMFPACK License: Your use or distribution of UMFPACK or any modified version
of UMFPACK implies that you agree to this License. This library is free software; you can
redistribute it and/or modify it under the terms of the GNU Lesser General Public License
as published by the Free Software Foundation; either version 2.1 of the License, or (at
your option) any later version. This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details. You should have received a copy of the GNU Lesser General Public License

http://www.7-zip.org/
http://www.7-zip.org/
http://www.cise.ufl.edu/research/sparse/amd
http://www.cise.ufl.edu/research/sparse/amd

Advanced Design System 2011.01 - Graphical Cell Compiler

4

along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St,
Fifth Floor, Boston, MA 02110-1301 USA Permission is hereby granted to use or copy this
program under the terms of the GNU LGPL, provided that the Copyright, this License, and
the Availability of the original version is retained on all copies. User documentation of any
code that uses this code or any modified version of this code must cite the Copyright, this
License, the Availability note, and "Used by permission." Permission to modify the code
and to distribute modified code is granted, provided the Copyright, this License, and the
Availability note are retained, and a notice that the code was modified is included.
UMFPACK Availability: http://www.cise.ufl.edu/research/sparse/umfpack UMFPACK
(including versions 2.2.1 and earlier, in FORTRAN) is available at
http://www.cise.ufl.edu/research/sparse . MA38 is available in the Harwell Subroutine
Library. This version of UMFPACK includes a modified form of COLAMD Version 2.0,
originally released on Jan. 31, 2000, also available at
http://www.cise.ufl.edu/research/sparse . COLAMD V2.0 is also incorporated as a built-in
function in MATLAB version 6.1, by The MathWorks, Inc. http://www.mathworks.com .
COLAMD V1.0 appears as a column-preordering in SuperLU (SuperLU is available at
http://www.netlib.org). UMFPACK v4.0 is a built-in routine in MATLAB 6.5. UMFPACK v4.3
is a built-in routine in MATLAB 7.1.

Qt Version 4.6.3 - Qt Notice: The Qt code was modified. Used by permission. Qt copyright:
Qt Version 4.6.3, Copyright (c) 2010 by Nokia Corporation. All Rights Reserved. Qt
License: Your use or distribution of Qt or any modified version of Qt implies that you agree
to this License. This library is free software; you can redistribute it and/or modify it under
the
terms of the GNU Lesser General Public License as published by the Free Software
Foundation; either version 2.1 of the License, or (at your option) any later version. This
library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details. You should have received a copy of the GNU Lesser General Public License
along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St,
Fifth Floor, Boston, MA 02110-1301 USA Permission is hereby granted to use or copy this
program under the terms of the GNU LGPL, provided that the Copyright, this License, and
the Availability of the original version is retained on all copies.User
documentation of any code that uses this code or any modified version of this code must
cite the Copyright, this License, the Availability note, and "Used by permission."
Permission to modify the code and to distribute modified code is granted, provided the
Copyright, this License, and the Availability note are retained, and a notice that the code
was modified is included. Qt Availability: http://www.qtsoftware.com/downloads Patches
Applied to Qt can be found in the installation at:
$HPEESOF_DIR/prod/licenses/thirdparty/qt/patches. You may also contact Brian
Buchanan at Agilent Inc. at brian_buchanan@agilent.com for more information.

The HiSIM_HV source code, and all copyrights, trade secrets or other intellectual property
rights in and to the source code, is owned by Hiroshima University and/or STARC.

Errata The ADS product may contain references to "HP" or "HPEESOF" such as in file
names and directory names. The business entity formerly known as "HP EEsof" is now part
of Agilent Technologies and is known as "Agilent EEsof". To avoid broken functionality and
to maintain backward compatibility for our customers, we did not change all the names
and labels that contain "HP" or "HPEESOF" references.

http://www.cise.ufl.edu/research/sparse/umfpack
http://www.cise.ufl.edu/research/sparse/umfpack
http://www.cise.ufl.edu/research/sparse
http://www.cise.ufl.edu/research/sparse
http://www.cise.ufl.edu/research/sparse
http://www.cise.ufl.edu/research/sparse
http://www.mathworks.com
http://www.mathworks.com
http://www.netlib.org
http://www.netlib.org
http://www.qtsoftware.com/downloads
http://www.qtsoftware.com/downloads

Advanced Design System 2011.01 - Graphical Cell Compiler

5

Warranty The material contained in this document is provided "as is", and is subject to
being changed, without notice, in future editions. Further, to the maximum extent
permitted by applicable law, Agilent disclaims all warranties, either express or implied,
with regard to this documentation and any information contained herein, including but not
limited to the implied warranties of merchantability and fitness for a particular purpose.
Agilent shall not be liable for errors or for incidental or consequential damages in
connection with the furnishing, use, or performance of this document or of any
information contained herein. Should Agilent and the user have a separate written
agreement with warranty terms covering the material in this document that conflict with
these terms, the warranty terms in the separate agreement shall control.

Technology Licenses The hardware and/or software described in this document are
furnished under a license and may be used or copied only in accordance with the terms of
such license. Portions of this product include the SystemC software licensed under Open
Source terms, which are available for download at http://systemc.org/ . This software is
redistributed by Agilent. The Contributors of the SystemC software provide this software
"as is" and offer no warranty of any kind, express or implied, including without limitation
warranties or conditions or title and non-infringement, and implied warranties or
conditions merchantability and fitness for a particular purpose. Contributors shall not be
liable for any damages of any kind including without limitation direct, indirect, special,
incidental and consequential damages, such as lost profits. Any provisions that differ from
this disclaimer are offered by Agilent only.

Restricted Rights Legend U.S. Government Restricted Rights. Software and technical
data rights granted to the federal government include only those rights customarily
provided to end user customers. Agilent provides this customary commercial license in
Software and technical data pursuant to FAR 12.211 (Technical Data) and 12.212
(Computer Software) and, for the Department of Defense, DFARS 252.227-7015
(Technical Data - Commercial Items) and DFARS 227.7202-3 (Rights in Commercial
Computer Software or Computer Software Documentation).

http://systemc.org/
http://systemc.org/

Advanced Design System 2011.01 - Graphical Cell Compiler

6

 Building Components . 8
 Code Walkthrough . 14
 Compiling a Macro . 20

 Compile Dialog Box . 20
 Defining Component Parameter Defaults . 21

 Configuration File Options . 26
 First Spiral Example . 27

 Create the Source Layout . 27
 Define a Polar Control . 27
 Edit the Source Design and Check the Effects . 30
 Remove the Ends of the Path . 30
 Set the Spiral for Out, Twice Around . 31
 Normalize Angle . 32
 Increase the Step Size . 33
 Add a Rotate/Move/Mirror Control . 34
 A Short Geometry Lesson . 35
 Use the More Accurate Equation for Radius . 36
 Add an Offset . 37
 Include the Port . 39
 Add a Polar Control for the Port . 40
 Replace the Constants with Parameters . 42
 Simplifying Long Equations . 45

 GCC Error Messages . 48
 Syntax Errors . 48
 Semantic Errors . 48
 Logic Errors . 49
 Run-Time Errors . 49
 Macro Error Messages . 51

 Getting Started with the Graphical Cell Compiler . 58
 GCC Examples . 58
 Graphical Cell Compiler Flow Chart . 59
 Macro Menu . 60
 Defining Artwork . 61
 Experimenting with Parameter Values . 64

 Glossary for Graphical Cell Compiler . 66
 Hints and Tricks . 67

 Selection and Control Definition . 67
 Controlling Pin Numbers . 67
 Testing for Minimum and/or Maximum Values . 68
 Advanced Value Testing and Error Reporting . 69
 Printing Shape Data . 71
 Define Parameter Order . 72
 Center of Rotation . 72
 Disable Controls . 73
 Multi-Model Drivers . 74

 Parameterized Artwork Macro (PAM) Controls . 76
 Contents . 76

 Defining Controls . 77
 Control Precedence . 77
 Theory of Operation . 78
 Using Control Lines . 80
 Defining Parameters . 84

Advanced Design System 2011.01 - Graphical Cell Compiler

7

 Controlling Multiple Shapes on Different Layers . 86
 Stretch Control . 88

 Stretch Direction . 88
 Stretch Orientation . 89
 Moving a Shape with a Stretch . 90
 Distance . 91
 Offset . 91
 Shape Response . 92

 Repeat Control . 93
 Repeat Direction . 93
 Number of Items . 95
 Repeat Distance . 95

 Rotate-Move-Mirror Control . 96
 Rotation Angle . 97
 Move . 98
 Mirror . 98
 Control Order . 99

 Polar Control . 100
 Angle Sweep . 101
 Radius and Incremental Offset . 102
 Shape Response . 104
 Using Paths . 104
 Delete End-Points . 105
 Using Variables in the Radius & Offset Parameters . 106

 User-Defined Control . 107
 Parameters . 108
 Function Call . 110
 Return Value . 112
 Function Implementation . 112

 Width Control . 117
 Width Change . 117
 Width . 118

 Viewing Controls . 119
 View Controls Dialog Box . 119
 Control Details . 120
 Editing a Control . 120
 Compile Shortcut . 121

 Temporary Control Variables . 122
 Polar Control . 122
 User-Defined Control . 122

 Second Spiral Example . 123
 A Second Geometry Lesson . 123
 Using the Equations . 125
 Define Controls . 125
 Create an AEL File . 125
 Calculate the Radius . 126
 Enter the X and Y Offsets . 126
 The Results . 128
 Create a Rectangular Spiral . 129

 Basic PAM Example . 133
 Example: Creating a Multi-Coupled Line . 133

Advanced Design System 2011.01 - Graphical Cell Compiler

8

Advanced Design System 2011.01 - Graphical Cell Compiler

9

 Building Components
The primary purpose of the Graphical Cell Compiler is the creation of new Layout artwork
models. But artwork models in themselves do not make a complete component definition.
This section walks through a simple example of building a complete component using
custom artwork defined using the Graphical Cell Compiler.

The premise of this example is the need to create an alternate MLIN component model
which we call MLIN2. MLIN2 simulates as a standard MLIN, but has some additional
artwork on non-metal layers for production needs.

Starting with the schematic in a new design named MLIN2, simply place a standard MLIN
with a port on each end. The MLIN needs to be parameterized so the physical dimensions
are changed from constants to variables. To make the example easier to follow, the new
component will have a Len and Wid parameter instead of the standard L and W.

Using the command "View/Create/Edit Schematic Symbol" we switch to the symbol view.
Now we can create any symbol we want to represent the new MLIN.

Moving on to the layout the standard MLIN artwork is defined on the cond layer. The ports
are also added. Then the additional artwork that makes this component different than the
standard MLIN is added on non-metallized layers. Finally the construction lines are added
for use by the two stretch controls.

Advanced Design System 2011.01 - Graphical Cell Compiler

10

The stretch controls for length and width are defined as:

Control: Stretch

 Direction: Both

 Length: Wid

 Offset: 50.0 mil

Control: Stretch

 Direction: Positive

 Length: Len

 Offset: 100.0 mil

After the compile, the last thing to check is the Design/Parameters dialog. In the
Parameters section initial values are assigned to the two parameters. The General section
is similar to this:

Advanced Design System 2011.01 - Graphical Cell Compiler

11

This finishes the new MLIN2 component definition. It's a simple hierarchical design that
simulates as a simple MLIN but generates custom artwork. The next step is to use MLIN2
in a design.
Open a new design called top . In this design we insert a new MLIN2 component between
two standard MLIN components. We add the Termination components, grounds, substrate,
and S-Parameter simulation components.

Advanced Design System 2011.01 - Graphical Cell Compiler

12

Selecting Layout/Generate/Update Layout creates the physical layout using the new
artwork.

And finally, performing a simulation generates the appropriate S11 response that we
would expect for this design.

Advanced Design System 2011.01 - Graphical Cell Compiler

13

At this point the new component is ready to move to a library for use by designers in
creating circuits with the modified artwork. Of course, this process could be applied to any
or all of the standard components to make versions with artwork customized to the
particular process being use to build the products.

Advanced Design System 2011.01 - Graphical Cell Compiler

14

 Code Walkthrough
The section describes the code that was generated to produce the model created in
Example: Creating a Multi-Coupled Line. (gcc)

The source shape definition for the model is a rectangle with two ports and two control
lines.

Three controls specify the model:

A stretch control for length that acts on the rectangle and both pins.
A stretch control for width that acts only on the rectangle.
A repeat control for the number of lines to create that acts on the rectangle and both
pins.

The actual defined controls, as seen in the Detail list from the Viewer dialog box, look like:

Control: Stretch

 Direction: Both

 Distance: length

 Offset: 100.0 mil

Control: Stretch

 Direction: Both

 Distance: width

 Offset: 50.0 mil

Control: Repeat

 Direction: In X

 X Number: number

 X Distance: width+space

 The Generated Code

The model header.

Advanced Design System 2011.01 - Graphical Cell Compiler

15

This statement makes sure that the model is loaded into the proper AEL vocabulary. Since
AEL code in the ~/networks directory is by default loaded into a different vocabulary, this
statement makes sure that existing models and new models being developed all reside in
the same vocabulary.

#voc(CmdOp)

Some comments to help identify what the different variable types are.

/* Datatypes: */

/* l_ primitive list from repeat */

/* p_ primitive to modify */

/* i_ initial primitive definition */

/* r_ primitive rotation */

/* w_ primitive width */

The declarations of the variables for each shape. The comments help indicate what the
shape is and what layer it came from.

/* Polygon (from a Rectangle) on mask 1 */

decl l_4127E1E8;

decl p_4127E1E8;

decl i_4127E1E8;

/* Port */

decl l_412BBD20;

decl p_412BBD20;

decl i_412BBD20;

decl r_412BBD20;

/* Port */

decl l_412BB7E8;

decl p_412BB7E8;

decl i_412BB7E8;

decl r_412BB7E8;

This section initializes the above variables with the actual shape data.

/**/

/**/

defun pam_init_couple()

{

/* Polygon (from a Rectangle) on mask 1 */

i_4127E1E8 = {

 {-0.00127, -0.000635},

 {0.00127, -0.000635},

Advanced Design System 2011.01 - Graphical Cell Compiler

16

 {0.00127, 0.000635},

 {-0.00127, 0.000635},

 {-0.00127, -0.000635} };

/* Port */

i_412BBD20 = {

 {-0.00127, 0} };

r_412BBD20 = 90;

/* Port */

i_412BB7E8 = {

 {0.00127, 0} };

r_412BB7E8 = -90;

The variable initialization is completed. A test is done to verify that the data is of type
real, and the initial data is copied into the primitive structure, which is where actual
modifications will take place.

l_4127E1E8 = list();

if (array_type(i_4127E1E8, "integer"))

 i_4127E1E8 = convert_array(i_4127E1E8, "real");

p_4127E1E8 = i_4127E1E8;

p_4127E1E8[0,0] = p_4127E1E8[0,0]; /* Force array

copy */

l_412BBD20 = list();

if (array_type(i_412BBD20, "integer"))

 i_412BBD20 = convert_array(i_412BBD20, "real");

p_412BBD20 = i_412BBD20;

p_412BBD20[0,0] = p_412BBD20[0,0]; /* Force array

copy */

l_412BB7E8 = list();

if (array_type(i_412BB7E8, "integer"))

 i_412BB7E8 = convert_array(i_412BB7E8, "real");

p_412BB7E8 = i_412BB7E8;

p_412BB7E8[0,0] = p_412BB7E8[0,0]; /* Force array

copy */

}

The actual control operations are performed on the data. For each control, several steps
are done:

Load construction line information. If the control uses a construction line as a
reference, the data for that line is sent to the control.
Evaluate equation. For each control, user-defined equations for each parameter are
evaluated to generate a single real value.
Call control. For each shape acted on, the control is called with that shape's data, and
all control parameters.

All data is passed as name/value pairs, so that specific parameter order is not required.
This also makes the program very flexible.

/**/

/**/

defun pam_process_couple(length,width,number,space)

{

decl pam_rep;

decl pam_var;

pam_set_cline_info(

Advanced Design System 2011.01 - Graphical Cell Compiler

17

 PAM_LINE_X1, 0,

 PAM_LINE_Y1, -0.001814322,

 PAM_LINE_X2, 0,

 PAM_LINE_Y2, 0.001814322,

 PAM_LINE_DX, 0,

 PAM_LINE_DY, 1,

 PAM_LINE_SLOPE, 9000000000);

decl p_length_1 = length;

decl p_offset_1 = 100.0 mil;

pam_do_stretch(

 PAM_COMMON_INIT, i_4127E1E8,

 PAM_COMMON_DATA, p_4127E1E8,

 PAM_COMMON_PRIM, PAM_POLYGON_TYPE,

 PAM_STRETCH_DIRECTION, 3,

 PAM_STRETCH_LENGTH, p_length_1,

 PAM_STRETCH_OFFSET, p_offset_1);

pam_do_stretch(

 PAM_COMMON_INIT, i_412BBD20,

 PAM_COMMON_DATA, p_412BBD20,

 PAM_COMMON_PRIM, PAM_PORT_TYPE,

 PAM_STRETCH_DIRECTION, 3,

 PAM_STRETCH_LENGTH, p_length_1,

 PAM_STRETCH_OFFSET, p_offset_1);

pam_do_stretch(

 PAM_COMMON_INIT, i_412BB7E8,

 PAM_COMMON_DATA, p_412BB7E8,

 PAM_COMMON_PRIM, PAM_PORT_TYPE,

 PAM_STRETCH_DIRECTION, 3,

 PAM_STRETCH_LENGTH, p_length_1,

 PAM_STRETCH_OFFSET, p_offset_1);

pam_set_cline_info(

 PAM_LINE_X1, -0.002561844,

 PAM_LINE_Y1, 0,

 PAM_LINE_X2, 0.005102352,

 PAM_LINE_Y2, 0,

 PAM_LINE_DX, 1,

 PAM_LINE_DY, 0,

 PAM_LINE_SLOPE, 0);

decl p_length_2 = width;

decl p_offset_2 = 50.0 mil;

pam_do_stretch(

 PAM_COMMON_INIT, i_4127E1E8,

 PAM_COMMON_DATA, p_4127E1E8,

 PAM_COMMON_PRIM, PAM_POLYGON_TYPE,

 PAM_STRETCH_DIRECTION, 3,

 PAM_STRETCH_LENGTH, p_length_2,

 PAM_STRETCH_OFFSET, p_offset_2);

This procedure sends the shape data off so the actual graphics can be created in the
Layout window. If the shape was copied by a Repeat or Polar control, the list of shapes is
sent. If it is still a single shape, only the one shape is created.

/**/

/**/

defun pam_output_couple()

{

de_set_layer(1);

if (is_list(l_4127E1E8))

 depam_output_polygon_list(l_4127E1E8);

else

Advanced Design System 2011.01 - Graphical Cell Compiler

18

 depam_output_polygon(p_4127E1E8);

de_set_layer(3);

de_set_layer(1);

if (is_list(l_412BBD20))

 depam_output_port_list(l_412BBD20, r_412BBD20);

else

 depam_output_port(p_412BBD20, r_412BBD20);

if (is_list(l_412BB7E8))

 depam_output_port_list(l_412BB7E8, r_412BB7E8);

else

 depam_output_port(p_412BB7E8, r_412BB7E8); }

This short procedure is called by the Advanced Design System to get the list of user-
defined parameter names for this model.

/**/

/**/

defun pam_couple_parm_info()

{ decl parms;

parms = "length,width,number,space";

return(parms); }

This is the start of the main entry-point for the model. The first thing it does is check all
the parameters and make sure they are actual values, not strings.

/**/

/**/

defun pam_couple(length,width,number,space)

{

if (is_string(length))

length = evaluate(length);

if (is_string(width))

width = evaluate(width);

if (is_string(number))

number = evaluate(number);

if (is_string(space))

space = evaluate(space);

de_set_global_db_factor();

This checks the version of this compiled model with the current version of the Graphical
Cell Compiler. This is a check to identify macros that were created with previous versions.
If there is any reason why the old macro will not work with the current version a message
will be issued telling the user to re-compile the macro.

if (\!pam_verify_model(3))

return;

The actual work gets done here.

pam_init_couple();

pam_process_couple(length,width,number,space);

pam_output_couple();

}

A comment ends the file.

Advanced Design System 2011.01 - Graphical Cell Compiler

19

/* end of file */

Advanced Design System 2011.01 - Graphical Cell Compiler

20

 Compiling a Macro
This section provides details on how compile a PAM, including how to set the defaults for
the component parameters that you have defined in the control dialog boxes.

A compiled Parameterized Artwork Macro (AEL script) acts like any other Agilent or user-
supplied PAM. At insertion, the macro creates graphics and the artwork is saved as part of
the design. As with any other macro, if the original PAM is changed, each design must be
revisited and the instances updated.

When a you create a PAM, you give all parameters default values. When you insert the
model defined by the macro, you can accepted or modify these values to customize the
specific instance.

 Compile Dialog Box
The selections in this dialog box control the actual creation of the Artwork Macro (AEL
script). After the macro compiles, you define the parameter defaults.

Output File Name is the name of the file that will contain the compiled macro. Default
= < current design name >_art.ael
Model Name is the name of the component created by the compiled macro. Default =

Advanced Design System 2011.01 - Graphical Cell Compiler

21

< current design name >
Default returns both the output file name and the model name to that of the current
design.
Browse opens a standard file browser.
Save Design functions the same as the File > Save command. If the design has not
been previously saved, the Save As dialog box opens so you can enter a name and
save the design. If the design has already been save, it is resaved to the same name.

Note
The compile function acts on a design as it is currently displayed, not on the design as it was last
saved. If you forget to save a design before you compile the macro, the compiled macro will include
any recent edits but may not match the saved design. It is good practice to always click Save Design
before you compile.

Compile starts compiling the macro.
The Compile Messages window displays running messages as the macro compiles.
Model parameters are listed. Check them to ensure that all of the parameters you
expected have been created, and that they are spelled correctly.

Errors are listed. Correct any errors, then recompile the macro. See the section GCC Error
Messages". (gcc)

Print enables you to print a copy of the contents of the Compile Messages window to use
as a reference, should you need to edit the macro.

Design/Parameters displays the Design Definition dialog box. See the section Defining
Component Parameter Defaults".

 Defining Component Parameter Defaults
Clicking Design/Parameters in the PAM Compiler dialog box displays the same dialog box
as the menu command File > Design/Parameters.

When creating a PAM, you do not need to edit entries in the General panel of this dialog
box. By default, Name, and Component Instance Name are the same as the Model Name
in the PAM Compiler dialog box; compiled macros are saved in the library called Compiled
Artwork Macros.

Advanced Design System 2011.01 - Graphical Cell Compiler

22

Click the Parameters tab.

Advanced Design System 2011.01 - Graphical Cell Compiler

23

In the Parameters panel, the Select Parameter field displays the defined component
parameters. Make sure these are what you expected to see (number, spelling, and so on).

Ensure that the Default Value for a parameter is realistic. For example, a model with a
length of 0.0 mil will not appear when you insert it.

Ensure that the Parameter Type is appropriate.

The Save AEL file button saves the file with the currently defined default parameters. The
file is also automatically saved when you exit the PAM Compiler.

Warning
Do not edit PAM parameters, spelling, or order in this dialog box. Edit them only through the View Controls
and the control dialog boxes.

 Parameter Type

Advanced Design System 2011.01 - Graphical Cell Compiler

24

Use the drop-down list in this field of the Design Definitions dialog box to set the type for
the selected parameter. The type of parameter selected defines the units used to display a
parameter:

Parameter Type Default Layout Units

String None

Unitless None

Frequency Hertz

Resistance Ohms

Conductance Farads

Inductance Henries

Length Mils

Time Seconds

Angle Degrees

Defined in the Preferences for Layout dialog box (Options > Preferences > Units).

Caution
If a unitless parameter is defined with a Parameter Type other than Unitless, the program treats the value
provided as a measure of the units selected. For example, if a Count parameter is defined with a
Parameter Type as Length, when you enter what you believe to be the number of times you want the
graphic repeated, the program displays the value entered as length in mils (see Missing or Incorrect Unit
Designators (gcc)).

 Editing Component Parameters

The Select Parameter field in the Design Definitions dialog box lists the component
parameters that have been defined for the model. The parameters are listed in the order
in which they were compiled, which is the order in which the program looks for them when
you use the macro. Because of this, if you want to add/delete parameters, you must do so
only in the View Controls and the control dialog boxes, and then you must recompile the
macro. Never perform any editing (Add, Cut, Paste, Copy) in the Design Definition
Parameters panel.

You can add additional simulation parameters to the component parameter list. The
parameter may be defined in the Edit Parameter side of the dialog. Select the last listed
parameter. Fill in all the fields to define a new variable, and click the Add button. The
newly defined parameter will be added after the selected one. Make sure any additional
simulation parameters are only added after the list of compiled parameters. never change
the order or names of the compiled parameters.

Note
See Hints and Tricks (gcc) for a technique to help control the parameter order.

If the macro is re-compiled after simulation parameters have been added, they will not be
lost. The system marks all the compiled parameters by prepending Generated parameter
in the Parameter Description field. In this way it knows which parameters are compiled
(and my be removed if they are no longer being used) and which ones were added
manually and should be retained.

Advanced Design System 2011.01 - Graphical Cell Compiler

25

During a compile, the system deals with the parameters in the following manner:

Saves all the previously defined parameters (compiled and simulation).1.
Generates the list of compiled parameters for the current set of controls. If the2.
parameter is in the saved list, copy it's Default, Type, and Description fields as saved.
Remove it from the saved list.
Of those parameters still in the saved list, if the Parameter Description field starts3.
with Generated parameter it is a compiled parameter that is no longer needed.
Delete it.
Copy all remaining simulation parameters from the saved list adding them after the4.
compiled parameters.

It is not an error to edit the Parameter Description field and remove the "Generated
parameter" part from the description compiled parameters. All this means is that the
system no longer knows the parameter was generated so that if the controls are ever
modified to not use it anymore, it will not be removed from the list (it will be treated like a
simulation parameter and retained).

Advanced Design System 2011.01 - Graphical Cell Compiler

26

 Configuration File Options
You can change some PAM defaults by setting configuration options in a local configuration
file (de_sim.cfg). There is probably a configuration file in your home directory already,
but if there is not, create the following:
$HOME/hpeesof/config/de_sim.cfg

The following three options are specific to the Graphical Cell Compiler (default values are
shown):

 CELL_COMPILER_DIRECTORY=networks

This specifies the default location for the compiled AEL scripts. When placed in the default
location (the networks directory) they are read at startup, and are available in the next
session. If you place the compiled scripts in another location, they are not automatically
read in. You will have to read them in manually for subsequent session. For example, you
might use the USER_AEL option to do this (see Model Composer (modcomp)).

 CELL_COMPILER_LIBRARY=Compiled Artwork Macros

This specifies the library name as it appears in the Design/Parameters dialog box. All
compiled models will be added to the specified library.

 CELL_COMPILER_MAX_COPY=1000

This is a threshold value for the Repeat and Polar controls. It defines the number of copies
the controls are allowed to make of each shape. It prevents infinite loops or unreasonable
requests due to user-data errors. The default value is arbitrary, and there are many cases
where the value should be larger; do not hesitate to change it.

Advanced Design System 2011.01 - Graphical Cell Compiler

27

 First Spiral Example
This section provides a step-by-step procedure that takes you through using the Graphical
Cell Compiler to generate a model for a square (four-sided) spiral. It starts at the very
beginning and traces each trial-and-error step as the model is created.

 Create the Source Layout
When creating a Parameterized Artwork Macro (PAM) using the Graphical Cell Compiler,
we start by placing the required items in a source layout:

Create a new design1.
Use the positional coordinate readout at the bottom of the window to insert a path2.
with square corners between 50,50 and 50,-50.

Note You must use square corners; otherwise, your results will not be accurate.

Insert a construction line below the path. Do not touch the path.3.
Insert a port at coordinates 50,0.4.
Now we are ready to create a spiral.

 Define a Polar Control
Choose the command Macro > Polar .1.

Note the message displayed in the Polar control Definition dialog box. This appears
because we opened the dialog box before we selected a control line and the shape
that we want the control to apply to. This is not a problem.
Select the path and the control line. Do not select the port at this time (for now we2.
will just work with the path).
We will try using the Polar control default values, so click OK.3.

Advanced Design System 2011.01 - Graphical Cell Compiler

28

Again the program keeps us from making a mistake. We must define the radius we
want to use.
In the Radius field, enter 0.0 (no units are needed when the value is 0). Now each4.
field has an entry.
Click OK.5.
Choose Macro * > * View/Edit . The polar control that we defined is listed here.6.

Click Detail .7.
The detail list shows:

Advanced Design System 2011.01 - Graphical Cell Compiler

29

Control: Polar

Delete
Ends:

False

Units: Radians

Start: 0.0

Stop: PI

Step: PI/8.0

Radius: 0.0

X Offset: 0.0 mil

Y Offset: 0.0 mil

Click OK in both the List and the Viewer dialog boxes.8.
Choose Macro * > * Compile .9.
Click Save Design .10.
Since you saved this design after placing the items, the program simply resaves the
design to the same name. Although we have not made any changes to the design (so
the save is not necessary) you are reinforcing a good habit by saving before you
compile.
Click Compile .11.
The Compile Messages window displays:

The path and name of the design
Model parameters (none, in this case)
The type of control (Polar)
Any errors or warnings
If any model parameters had been defined, we would now set their default
values, but at this point there are no parameters to set.

Click OK.12.
In the Main window, open a new Layout window.13.
Click the Display component library list icon and select the Compiled Artwork Macros14.
library.
Double-click the component we just created and insert it in the Layout window:15.

Advanced Design System 2011.01 - Graphical Cell Compiler

30

Since this does not look anything like a spiral, it is pretty obvious that we made an
(artificial) mistake.
We need to cut the path with the construction line, so that the control stretches the
path, rather than copying it.

 Edit the Source Design and Check the Effects
In the source design, move the construction line up so that it crosses the port (and1.
0,0), as shown.

Choose Macro * > * Compile .2.
Click Save Design to save the change that you just made, then click Compile .3.
In the Layout window that contains the model, note that the inserted model did not4.
change. Once you insert a model, it stays as defined by the macro when you inserted
it. Either delete the old model, or move it out of the way.
Insert the updated model from the Compiled Artwork Macros library.5.

This is better, but we need to remove the straight parts of the path that are caused
by the original shape. It is as if the control inserted a curve in the center of the
original shape. All we want is the curve.

 Remove the Ends of the Path

Advanced Design System 2011.01 - Graphical Cell Compiler

31

In the source design, choose Macro > View/Edit .1.
In the Viewer, select the Polar control and click Edit .2.
In the Polar Definition dialog box, click the button at the top of the dialog box to turn3.
on the Delete End-Points feature. If you check the Detail List now, you will see that
the control is defined as follows:
Control: Polar

Delete
Ends:

True

Units: Radians

Start: 0.0

Stop: PI

Step: PI/8.0

Radius: 0.0

X Offset: 0.0 mil

Y Offset: 0.0 mil

Save the design and recompile the macro. Then reinsert the model.4.

This looks much better.
We know that a spiral needs to go around several times, and that it must spiral out.
For this example, we want it to go around twice.

 Set the Spiral for Out, Twice Around
In the Polar Definition dialog box, enter 4.0*PI (twice around) in the Stop parameter1.
field.
We know the model needs to spiral out, so we will set the radius of the spiral as a2.
function of Angle. Enter 50.0_angle mil* in the Radius parameter field.
This time you must include the units, or you will get something very big.
The Detail List now looks like:
Control: Polar

Delete
Ends:

True

Units: Radians

Start: 0.0

Stop: 4.0*PI

Step: PI/8.0

Radius: 50.0*_angle
mil

X Offset: 0.0 mil

Y Offset: 0.0 mil

Note the use of the Global Variable. For more information, see Using Variables in the

Advanced Design System 2011.01 - Graphical Cell Compiler

32

Radius & Offset Parameters". (gcc)
Save the design, recompile the macro, and reinsert the model.3.

Well, we have a spiral. It is difficult to tell in this figure, but you will notice on your
screen that this spiral is very big. This is because the variable _angle goes from 0 to
6.28 for the first time around, multiplied by our desired spacing of 50.0 (set in the
Radius parameter).

 Normalize Angle
If we change the value of Radius to normalize _angle :

Control: Polar

Delete
Ends:

True

Units: Radians

Start: 0.0

Stop: 4.0*PI

Step: PI/8.0

Radius: _angle/(2.0*PI)*50.0 mil

X Offset: 0.0 mil

Y Offset: 0.0 mil

Advanced Design System 2011.01 - Graphical Cell Compiler

33

At this point we have a pretty good definition for a rounded spiral. We would want to
decrease the step size (by increasing the number of steps) so that it would be smoother,
but this is pretty close.

 Increase the Step Size
For a square spiral, though, we need to increase the step size so we have only four points
(steps) per cycle.

Advanced Design System 2011.01 - Graphical Cell Compiler

34

Control: Polar

Delete
Ends:

True

Units: Radians

Start: 0.0

Stop: 4.0*PI

Step: 2.0*PI/4.0

Radius: _angle/(2.0*PI)*50.0 mil

X Offset: 0.0 mil

Y Offset: 0.0 mil

We still have several problems. The first is simply that we would like the spiral to be
oriented vertically rather than based on the Angle points. To do this, we add a
Rotate/Move/Mirror control.

 Add a Rotate/Move/Mirror Control

Advanced Design System 2011.01 - Graphical Cell Compiler

35

Control: Polar

Delete
Ends:

True

Units: Radians

Start: 0.0

Stop: 4.0*PI

Step: 2.0*PI/4.0

Radius: _angle/(2.0*PI)*50.0 mil

X Offset: 0.0 mil

Y Offset: 0.0 mil

Control: Mirror

Units: Degrees

Angle: -45.0

X Offset: 0.0 mil

Y Offset: 0.0 mil

X Mirror: FALSE

Y Mirror: FALSE

The next problem, which you may have noticed, is that the lines are not far enough apart.
Because we used 50.0 for the space, and the path is 25.0 wide, we would expect the
space between lines to be the same as the width of the lines. The problem is in the radius
formula , which specifies a distance of 50.0 from one corner to the next corner, but we
want a distance of 50.0 from one side to the next side . The corner-to-corner distance
must be larger than 50.0.

 A Short Geometry Lesson
We must look into a little geometry to resolve this. We will use an angle greater than 90°
(as if we had more than four sides) so we will be forced to come up with a general case.

Using our two-turn spiral, the following is what we know about the triangle formed
between two vertex points:

1.
(line width plus spacing).
Since the sides are parallel and b is the distance between sides, then 2.
.

Because 3.
, the more sides the spiral has the smaller the incremental angle at each vertex.

Advanced Design System 2011.01 - Graphical Cell Compiler

36

For this case:
.

Because 4.

,
.

The Law of sines states that: 5.
. Since
, we get

.

If we substitute the above values:

Switching to radians:

We could evaluate the constant, but we will leave it like this so it is easier to replace the 4
with a variable for the number-of-sides later.

Note A general purpose spiral would use user-supplied values for the line width, spacing, number of turns,
and perhaps number of sides. For now we are using constants for all of these. Once the basic model
works, we will go back and add the parameters.

 Use the More Accurate Equation for Radius

Advanced Design System 2011.01 - Graphical Cell Compiler

37

Control: Polar

Delete
Ends:

True

Units: Radians

Start: 0.0

Stop: 4.0*PI

Step: 2.0*PI/4.0

Radius: _angle/(2.0*PI)*50.0 mil/sin(PI/2.0-PI/4.0)

X Offset: 0.0 mil

Y Offset: 0.0 mil

Control: Mirror

Units: Degrees

Angle: -45.0

X Offset: 0.0 mil

Y Offset: 0.0 mil

X Mirror: FALSE

Y Mirror: FALSE

The last problem (why the spiral is not square) is much more serious. For a simple
rounded spiral, each point is placed at an ever-increasing radius from the center. As is
obvious, that does not work for a square spiral (or any n -sided spiral where n is small).
Basically, each point needs to be pushed along the direction of the side by a fraction of
the distance between spirals.

 Add an Offset
Given that we are at some angle Theta (as we step around the spiral) we need to push the

Advanced Design System 2011.01 - Graphical Cell Compiler

38

vertex point for the current side out. The angle B is the same as we derived above. Since
each time we move around the spiral we move 50.0 mil out, we move 1/4 (1/sides
actually) that amount for each side. Our offset needs to be 1/2 that amount, so we need
to move (remembering that most of these constants will become variables later) 50.0 / (4
* 2).

Next, we need to rotate that amount based on the current step angle Theta plus the angle
B.
Since rotation is defined as

X = r * cos(a) - r * sin(a)

Y = r * cos(a) + r * sin(a)

we can substitute everything and we're ready to go. This is where the X and Y offset fields
become useful. We take all this and fill it in:

Advanced Design System 2011.01 - Graphical Cell Compiler

39

Control: Polar

Delete
Ends:

True

Units: Radians

Start: 0.0

Stop: 4.0*PI

Step: 2.0*PI/4.0

Radius: _angle/(2.0*PI)*50.0 mil/sin(PI/2.0-PI/4.0)

X Offset: 50.0 mil/(4*2)
*(cos(_angle+PI/2.0-PI/4.0)-sin(_angle+PI/2.0-PI/4.0))

Y Offset: 50.0 mil/(4*2)
*(cos(_angle+PI/2.0-PI/4.0)+sin(_angle+PI/2.0-PI/4.0))

Control: Mirror

Units: Degrees

Angle: -45.0

X Offset: 0.0 mil

Y Offset: 0.0 mil

X Mirror: FALSE

Y Mirror: FALSE

Now it is time to do something about pins.

 Include the Port
We start by simply including the port in both controls. Nothing else changes.

In the source design, choose Macro > View/Edit .1.
In the Viewer, select the Polar control and click Edit .2.
In the design, select the path, the control line, and the port, then click OK.3.
Save the design, recompile the macro, and reinsert the model.4.

Advanced Design System 2011.01 - Graphical Cell Compiler

40

We need to use the same polar equations for the ports, but we do not want all the
steps. In fact, we want only one step (the last one).

 Add a Polar Control for the Port
In order to fix the previous problem of too many ports being created, we need to create a
new Polar control that acts just on the port. This means we need to edit the existing Polar
control and remove the port from its selected shapes. We then create a new Polar control
to operate on just the port. The two Polar controls will be identical except that this second
one will have the Step set to the same value as the Stop so that it creates only one copy
of the port at the end of the spiral.
It is important that the two Polar controls take place before the Mirror control so that the
generated spiral and the ports line up correctly.
Be sure that when all the additions are done, each control is operating on the listed
shapes:

First polar control: construction line and path.
Second polar control (where Stop = Step): construction line and port.
Mirror control: path and port.

Advanced Design System 2011.01 - Graphical Cell Compiler

41

Advanced Design System 2011.01 - Graphical Cell Compiler

42

Control: Polar

Delete
Ends:

True

Units: Radians

Start: 0.0

Stop: 4.0*PI

Step: 2.0*PI/4.0

Radius: _angle/(2.0*PI)*50.0 mil/sin(PI/2.0-PI/4.0)

X Offset: 50.0 mil/(4*2)
*(cos(_angle+PI/2.0-PI/4.0)-sin(_angle+PI/2.0-PI/4.0))

Y Offset: 50.0 mil/(4*2)
*(cos(_angle+PI/2.0-PI/4.0)+sin(_angle+PI/2.0-PI/4.0))

Control: Polar

Delete
Ends:

False

Units: Radians

Start: 0.0

Stop: 4.0*PI

Step: 4.0*PI

Radius: _angle/(2.0*PI)*50.0 mil/sin(PI/2.0-PI/4.0)

X Offset: 50.0 mil/(4*2)
*(cos(_angle+PI/2.0-PI/4.0)-sin(_angle+PI/2.0-PI/4.0))

Y Offset: 50.0 mil/(4*2)
*(cos(_angle+PI/2.0-PI/4.0)+sin(_angle+PI/2.0-PI/4.0))

Control: Mirror

Units: Degrees

Angle: -45

X Offset: 0.0 mil

Y Offset: 0.0 mil

X Mirror: FALSE

Y Mirror: FALSE

The final step is to replace the constants with parameter names so that the model is
variable instead of fixed.

 Replace the Constants with Parameters
We use the following parameters in the two Polar controls:1.

Turns = the number of complete revolutions
Sides = the number of sides
Width = the width of the path
Space = the space between the revolutions

We also add a Width control to the path so that it resizes in response to the width2.
parameter:

Control: Width

Advanced Design System 2011.01 - Graphical Cell Compiler

43

Change: Absolute
Width: width
Up until now, we used constants and had to include the mil unit designator. In
the following equations we use parameters we will define to be in mils (in step
2), so a designator is no longer needed. If we left it in we would basically be
converting to mils twice, and the results of the equations would be too small.
Filling everything in and doing a little equation cleanup, we get:
Control: Width

Change: Absolute

Width: width

Control: Polar

Delete
Ends:

True

Units: Radians

Start: 0.0

Stop: turns*2*PI

Step: 2.0*PI/sides

Radius: _angle/(2.0*PI)*(width+space)/sin(PI/2.0-PI/sides)

X Offset: (width+space)/(sides*2)
*(cos(_angle+PI/2.0-PI/sides)
-sin(_angle+PI/2.0-PI/sides))

Y Offset: (width+space)/(sides*2)
*(cos(_angle+PI/2.0-PI/sides)
+sin(_angle+PI/2.0-PI/sides))

Control: Polar

Delete
Ends:

False

Units: Radians

Start: 0.0

Stop: turns*2.0*PI

Step: turns*2.0*PI

Radius: _angle/(2.0*PI)*(width+space)/sin(PI/2.0-PI/sides)

X Offset: (width+space)/(sides*2)
*(cos(_angle+PI/2.0-PI/sides)
-sin(_angle+PI/2.0-PI/sides))

Y Offset: (width+space)/(sides*2)
*(cos(_angle+PI/2.0-PI/sides)
+sin(_angle+PI/2.0-PI/sides))

Control: Mirror

Units: Degrees

Angle: -360/(sides*2)

X Offset: 0.0 mil

Y Offset: 0.0 mil

X Mirror: FALSE

Y Mirror: FALSE

After compiling the macro, we must set default values for the parameters we have3.

Advanced Design System 2011.01 - Graphical Cell Compiler

44

defined. Note that the parameters are listed in the Compile Messages window.

Note Depending on your setup, the messages displayed can differ from those shown.

Click Design/Parameters .4.
In the dialog box that appears, click the Parameters tab.5.
The parameters are listed in the Select Parameters window. Set them as follows:

Turns = 3, Unitless

Sides = 4, Unitless

Width = 20.0 mil,
Length

Space = 15.0 mil,
Length

Click Save AEL , then OK.6.
In the PAM Compiler dialog box, click OK.7.
Place the new component.8.

Advanced Design System 2011.01 - Graphical Cell Compiler

45

 Simplifying Long Equations
In this example, the equations in the Polar controls are pretty long and there is a lot of
duplication in them. There is a way to simplify them.

Warning These types of modifications must be done with extreme care. If you reorder the controls or
make other changes, it is easy to create a situation where constants are referenced before they are
defined. It is much safer to leave expressions long, with a lot of duplication.

Because the Start/Stop/Step equations are evaluated before the Radius/Offset equations,
and since any local variables are visible during the evaluation of the Radius/Offset
equations, it is possible to define a local constant to use in them. Using local constants,
the controls look like:

Advanced Design System 2011.01 - Graphical Cell Compiler

46

Control: Polar

Delete
Ends:

True

Units: Radians

Start: 0.0; decl temp_a = PI/2.0-PI/sides;

Stop: turns*2*PI

Step: 2.0*PI/sides

Radius: _angle/(2.0*PI)
*(width+space)/sin(temp_a)

X Offset: (width+space)/(sides*2)
*(cos(_angle+temp_a)-sin(_angle+temp_a))

Y Offset: (width+space)/(sides*2)
*(cos(_angle+temp_a)+sin(_angle+temp_a))

Control: Polar

Delete
Ends:

False

Units: Radians

Start: 0.0

Stop: turns*2.0*PI

Step: turns*2.0*PI

Radius: _angle/(2.0*PI)*(width+space)/sin(temp_a)

X Offset: (width+space)/(sides*2)
*(cos(_angle+temp_a)-sin(_angle+temp_a))

Y Offset: (width+space)/(sides*2)
*(cos(_angle+temp_a)+sin(_angle+temp_a))

Control: Mirror

Units: Degrees

Angle: -360/(sides*2)

X Offset: 0.0 mil

Y Offset: 0.0 mil

X Mirror: FALSE

Y Mirror: FALSE

The constant is declared as part of the first Polar control's Start parameter as it is
evaluated in AEL. It is then available for each evaluation of the Radius and Offset
expressions for the first and second Polar controls.
By editing the AEL file, you can use the spiral model to create spirals with different widths,
as shown.

Advanced Design System 2011.01 - Graphical Cell Compiler

47

Advanced Design System 2011.01 - Graphical Cell Compiler

48

 GCC Error Messages
Building a Parameterized Artwork Macro (PAM) is similar to working in a programming
language such as Basic, Pascal, or C, in that there is source code that is compiled into an
executable program. In the case of a PAM, the source code is the source layout,
comprising shapes to manipulate and controls that perform the manipulation. The source
layout is compiled into an executable AEL macro (which is itself a programming language
used by the Advanced Design System).

As when you use a programming language, you should never delete the source code. Save
the source layout as long as the macro remains in use. If you wish to modify the source
layout to create a new macro, copy the design into a new layout.

As with programming languages, these types of errors are possible:

Syntax
Semantic
Logic
Run-time

This section provides details on these types of errors as they pertain to a PAM.

 Syntax Errors
In the context of a PAM, syntax errors are typically errors in equations. For example, the
equation length++1 would be a syntax error. Most syntax errors will be trapped in the
control dialog when you click OK. At that point, each expression is passed to an AEL
parser to check the syntax. Any errors reported by the parser are displayed in a pop-up
dialog, and the offending expression is colored red to help you quickly see which one has
the error. All syntax errors must be fixed before the control is accepted.

 Semantic Errors
Semantic errors are errors in usage. These include trying to do a list index into a variable
that is not a list (using the AEL nth() function). These types of errors are not identified by
the AEL parser (the syntax is correct) and at this point will not be identified until the
parser generates a run-time error (see below).

Advanced Design System 2011.01 - Graphical Cell Compiler

49

 Logic Errors
Logic errors are errors in the flow of the program. Everything seems correct, the macro
runs fine, but it generates the wrong results. These errors may be very hard to find and
fix in a complicated macro, which is why a macro should be built from a simple starting
case and expanded. If you start with something simple that works, it is much easier to
add a little bit more. If it fails, the problem is in what was just added, not in anything that
was previously working. There is no easy way to find and fix logic errors. You must
understand what you want to do, and what the controls are actually doing.

The example in First Spiral Example (gcc) illustrates the concept of starting simple and
working up to a complicated macro.

 Run-Time Errors
In the context of a PAM, run-time errors fall into two classes:

Math errors
Untrapped semantic errors

 Math Errors

Math errors are typically caused by improper user-input for a parameter. One example is
user-input that results in a divide-by-zero in an equation. These errors are trapped by AEL
and cause the macro to abort execution.

Another example error would be user-input that causes one of the copy controls (Repeat
or Polar) to go into an infinite loop. These errors are trapped by the run-time control code
when a loop request exceeds the internal maximum copy limit. Again, if the error occurs
the macro execution is aborted. You can set the maximum copy limit using the
CELL_COMPILER_MAX_COPY=1000 (gcc) configuration file option.

 Untrapped Semantic Errors

Of all the errors possible, untrapped semantic errors will generate errors that are the most
removed from the actual cause. This is best demonstrated by an example:

 Defining Repeat Distance as Step

A common mistake is to use the variable name step for the Repeat Distance field in the
Repeat control. Because step is a reserved word in AEL, it does not generate a syntax
error, but it is also not identified as a user parameter. One of the reasons it is important
to check the list of identified parameter names generated by the compile (as well as to
check the Design/Parameters dialog box to see what the variables are and what the
default values/units are) is that if a parameter is not listed, you may have used an AEL
reserved word.

Advanced Design System 2011.01 - Graphical Cell Compiler

50

When you try to insert a macro that has been compiled with step as the Repeat Distance,
the following error message appears:
(couple_art.ael line 164, column 11 in struct2)
operand real value expected
Cannot load component artwork

Because step returned a value that was not a number, an error was generated when the
program tried to evaluate the expression in which it was used. The best way to deal with
an error of this type is to edit the PAM script. Go to the line indicated in the error
message. Look there (or a few lines above) for something wrong. In this case the
generated code has nothing obviously wrong:

decl p_value1X_3 = number;

 decl p_value2X_3 = step;

 decl p_value1Y_3 = 0.0;

 decl p_value2Y_3 = 0.0;

 pam_rep = pam_do_repeat\(

 PAM_COMMON_DATA, p_416DB340,

 PAM_REPEAT_DIRECTION, 1,

 PAM_REPEAT_MODEX, 3,

 PAM_REPEAT_VALUE1X, p_value1X_3,

 PAM_REPEAT_VALUE2X, p_value2X_3,

 PAM_REPEAT_MODEY, 3,

 PAM_REPEAT_VALUE1Y, p_value1Y_3,

 PAM_REPEAT_VALUE2Y, p_value2Y_3\);

When this type of error occurs, look at each variable/function name and make sure it is
being identified correctly (step is not, in this case) and that, in the case of intrinsic
functions, it is being used properly.

 Missing or Incorrect Unit Designators

Another common run-time error is caused by missing or incorrect unit designators in
equations. The default MKSA unit for length is meters, but most designers define the
Layout window to be in µm or mils. This means that any value without a unit specified is
treated as meters.

Example If a Repeat control is defined with a fixed repeat distance of 100 mil, and you
forget the mil and just enter 100, the system treats that as a repeat distance of 100
meters. This means that the inserted macro will be very big.

The system makes an effort to trap unit problem by checking for shape data values that
exceed the database numeric range. A layout will have a specific layout unit (such as mil)
and resolution (0.01, for example) as set in the Options/Preferences dialog under the
Layout Units tab. These values will define the maximum size of any data value used in the
layout, both in terms of absolute size and number of significant digits.

The system monitors the primitive data looking for values that will overflow when
converted to database units. If an overflow is identified, the following error message is
displayed:

Advanced Design System 2011.01 - Graphical Cell Compiler

51

As the message states, the macro's parameter values as well as any constants used in the
control definitions should be checked for missing unit designators. Other things to look for
would be various math errors or magnitude errors that results in extremely large numeric
values (several orders of magnitude larger than the unit being used).

In addition to the above error checking done by the system, this type of error may have
other clues to help you recognize it:

When you insert the macro, there is no drag image (it is too large to fit in the
window).
When you insert the macro, some or all of the shapes are missing (they are out of
view).
If you choose the command View > View All , the view zooms way out. Shapes may
not be visible (they are too small to see at this zoom distance).
While inserting the macro you get very unusual error messages, for example:
POLYGON requires at least 3 vertices . The problem is that due to the large size
of the data values significant digits were lost and some of the shape's vertex points
have collapsed to a single point. If enough points collapse the polygon no longer has
enough unique points and an error is generated.

If any of these things happen while you are developing or testing a macro, there is
probably a unit mismatch somewhere.

 Macro Error Messages
What following section lists the warning and error messages you are likely to encounter
when using the Graphical Cell Compiler. The listing provides more detail on each
message: what caused the message and what to do to fix it.

The messages are grouped in three sections to parallel the three areas of interaction for
macro: definition, compilation, and execution.

 Macro Definition Messages

 There must be ONE construction line selected as a reference.

Advanced Design System 2011.01 - Graphical Cell Compiler

52

Several of the controls (Stretch, Repeat, and Polar) require a construction line to be
included as a reference line for the operation. This message indicates that a control
definition was completed (the OK button was pressed) but there was more than one
construction line selected.

 Shapes to be operated on must be selected.

Most of the controls require graphic shapes to be included as the object of the operation
(Stretch for example).

This messages indicates that a control definition was completed (the OK button was
pressed) but there were no shapes present and selected in the design.

 Shapes with width to be operated on must be selected.

The Width control only operates on graphic shapes that support the idea of width. At this
time that is a Path. This messages indicates that a control definition was completed (the
OK button was pressed) but there were no Paths present and selected in the design.

 [field name] Field:

ERROR AELxxxx(column x) [ael error]
This message indicates that there was an AEL syntax error as listed in the specified field
for the current dialog. The message will attempt to identify the column number where the
error was discovered and list the nature of the error. See the AEL Guide for more
information about valid AEL syntax.

 [field name] information must be provided.

This message indicates that the named required field must have a value before the control
definition is complete.

 Macro Compilation Messages

 Warning: functions currently undefined:

This warning message indicates that the listed function names were used within the
various control expressions, but are not yet defined in the system. This could mean that
the function is not a part of AEL or may be mis-spelled. If it's a user-defined function, then
it means the file containing the function definition as not yet been loaded into the system.

This warning message has no effect on the compilation of the PAM. If there were no other
warning or error messages, the compiled PAM is fine and ready to run. But the listed
function must be loaded into the system before the PAM is executed to create the
specified artwork. If the function is still not found then a run-time error will be generated.

 Identified the model parameters:

This is an informative message only. It lists the undefined variables found in all the control
expressions. These variables will be used as the model parameters and will show up in the
Design/Parameters dialog.

It's always a good idea to check this list to make sure that all the names you expect show
up (you didn't use an AEL reserved word by accident) and that there aren't any extra ones

Advanced Design System 2011.01 - Graphical Cell Compiler

53

(perhaps due to a spelling error of an AEL name).

 Warning: no primitives found for this control

While processing a control it was discovered that there were no primitive shapes
associated with it. This typically happens when a control is defined and then the shapes
that were selected for it to operate on were deleted. Perhaps a shape was deleted and re-
inserted to fix something but the control was not edited to associate the new shape with
the control.

 Warning: primitives without width ignored for this control

The Width control can only operate on shapes with width (like a path). If a shape without
width is included in the control the above warning is displayed.

Warning: detected primitives with different (x,y) point counts for this control.

In most cases the User-Defined control will be written to work with a given class of
shapes, polygons for example. It is much more complicated to write one function that can
work with a mixture of shape types, for example polygons (which can have three or more
points) and text (which has only one (x,y) point). If while compiling the macro it discovers
mixed shape types associated with a User-Defined control, the above warning is displayed.

While this may be in fact intended, one should be very careful about passing different
shape types to a give user-defined function.

 Warning: ignored unsupported graphical primitive type: [name]

If while processing a control it discovers a primitive shape, component, or connectivity
element that the control will not support this message is printed. For example, Wires are
not supported by any of the controls.

If this warning is displayed even though the Layout appears to not have any unsupported
items present, it is probably because the design was not empty to begin with. Perhaps an
old design was used (after deleting everything visible) or perhaps there is or was a
Schematic page in the design. It's always best to start with a newly created design to be
sure there won't be anything left over from previous work.

 ERROR: no construction line found for this control

While processing a control it was discovered that there was no construction line associated
with it. This typically happens when a control is defined and then the construction line is
deleted and re-inserted to modify it's location or angle. The control will need to be edited
and a construction line selected to be associated with it.

 Compile complete:

errors =
warnings =
This is simply a summary message which lists the total number of errors and warnings
encountered during the compilation of the macro. Any errors mean that the macro is
invalid and will not run. Depending on the type of error the compile may have stopped
leaving a partially generated file which may not even be valid to AEL. The errors must be
corrected before proceeding.

Advanced Design System 2011.01 - Graphical Cell Compiler

54

Warning messages do not prevent the macro from being generated, but they do indicate a
problem which could result in unexpected results. The warnings should be resolved,
especially if the PAM is not working as expected.

 Use Design/Parameters to give the model parameters default values.

This is just a reminder message. It is very important that the Design/Parameters dialog be
checked for any new PAM as well as any time the number or type of macro parameters
change. Since new parameters get a default value of zero it is important to set them to a
more reasonable value so that the insertion of a default component (the user didn't
modify any of the parameters before insertion) looks correct (no lengths of zero or the
like).

 Macro Execution Messages

 Warning: repeat exceeded limit, operation aborted

Warning: step exceeded limit for polar, operation aborted.

Both the Repeat and Polar controls keep track of how many iterations they perform. If
there are to many it is possible that there is something wrong. It could be an infinite loop
or just a very large count due to some error in the control specification or parameter
value. To prevent any problems the iteration count is checked against a maximum and if it
exceeds it the above warnings are displayed.

The default iteration limit is 1,000. This value can be modified using the configuration file
option CELL_COMPILER_MAX_COPY. For details, see Configuration File Options (gcc).

 Warning: infinite step detected for polar, operation aborted

As the Polar control is initializing it checks the angel start, stop, and step values. If
<i>start < stop</i> with a negative step value, or if <i>start > stop</i> with a positive
step value the control would go into an infinite loop. If these conditions are identified, the
above warning is printed.

 ERROR: obsolete compiled model version, re-compile model

This message indicates that the PAM was compiled using a previous version of the
Graphical Cell Compiler. Due to changes made in the new version the PAM must be re-
compiled. The source design does not need to be changed, it just needs to be opened and
the Macro/Compile dialog opened to perform a fresh compile.

 ERROR: invalid compiled model

The code testing what version of the Graphical Cell Compiler was used to create this
model encountered an invalid version number. About the only way this could happen is if
the PAM was manually edited and the number changed. In normal usage this message
should never occur. If it does, simply re-compile the model and the problem should be
corrected.

 Control: [name], Shape: [type],

ERROR: operation on large shape data exceeded database numeric range.

Advanced Design System 2011.01 - Graphical Cell Compiler

55

Look for parameter values with missing units which default to meters.

As previously discussed, this error is displayed when the calculation for a shape's data
points becomes too large. This is typically caused by a missing units designation in a
control definition, or an incorrect unit assignment to a macro parameter.

For more information, see Missing or Incorrect Unit Designators.

 Control: [name], Shape: [type],

ERROR: initial and current shape data have different number of (x,y) points.
Look for a User-Defined control which added/deleted points.

This error is caused by a User-Defined control which added or removed a number of (x,y)
data points from a shape and did a return of type "Shape" which put the data back in the
original location. This difference in the array size of the initial shape and current shape
structures can cause errors in subsequent controllers.

If the User-Defined control is simply modifying (x,y) points it can return them as type
"Shape". But if it is adding or deleting points is must return the resulting shape as type
"Replace List" or "Append List" even if it is still a single item.

For more information, see User-Defined Control. (gcc)

 User-defined shape data for [type]

not an array.
is a 1-dimensional array.
is a >2-dimensional array.
is not an (x,y) array.
is not a list.

line [AEL line number] in [AEL file name]
This set of errors are possible results from a series of tests performed on the return data
from a User-Defined control. The returned data must be an array of (x,y) values, that is a
two-dimensional array.

A well formed array of (x,y) points would look something like:

[[1, 2], [3, 4], [5, 6]]

The first test is to make sure the return data is an array. If it isn't the "not an array"
message is displayed.
Next the data is checked to make sure it is a multi-dimensional array. If it isn't then the
"is a 1-dimensional array" message is displayed. A one-dimensional array would look like:

[1, 2, 3, 4, 5]

It is then checked to make sure it doesn't have more than two dimensions. If it does the
"is a >2-dimensional array" message is displayed. A three-dimensional array would look
something like:

Advanced Design System 2011.01 - Graphical Cell Compiler

56

[[[1, 2], [3, 4]], [[5, 6], [7, 8]]]

The final check is to make sure the second dimension consists of only two elements, that
is an (x,y) pair. If it doesn't then the "is not an (x,y) array" message is displayed. A two-
dimensional array with two many elements in the second dimension would look something
like:

[[1, 2, 3], [4, 5, 6], [7, 8, 9]]

An additional test is performed if the User-Defined control is returning a list of primitives
to make sure the return value is in fact a list. If it isn't then the "is not a list" message is
displayed. If the list is OK, then each element of the list is run through the above tests.

 Control: [name], Shape: [type], Parameter: [name]

ERROR: parameter is NULL
ERROR: failed to retrieve parameter
ERROR: array is not of type REAL
ERROR: array is not a two-dimensional array of (x,y) points (order 2)
ERROR: array is not a two-dimensional array of (x,y) points (dimension 2)
ERROR: parameter is not of type LIST
Warning: extra parameters ignored

As each control starts to execute all the parameters are gathered from AEL. A number of
tests are performed to make sure the parameters are of the correct size and type. If any
errors are found one of the above messages is printed to help isolate the problem.

In general these messages should never occur. The most likely cause of such an error is
through manually editing the PAM and making changes to the Control's parameter list. If
such an error were to occur, re-compiling the PAM should resolve it.

 Preferred pin with the same number exists

When a PAM has a fixed number of pins, the component pins are assigned the same
numbers as assigned to the ports in the source Layout. Since each port must have a
unique number the pin numbers will also be unique.

The rules change if a source port is involved in a repeat control. Since all the copied pins
must have a unique number, rather than using the port number they are allowed to take
on the default numbering (next lowest available integer) as they are inserted. Normally
this behavior works fine. A problem develops when an un-copied pin is created after a
copied pin.

For example, assume the source design has two ports numbered: 1 and 2. Port 1 is part
of a repeat control with a count of 4. So the component is generated with pins 1 through
4. It then generates a pin for port 2, and since it isn't part of a repeat is assigned the port
number of 2 which is already in use by the second copy of port 1.

The above error is printed when this new pin (with the default number of 5) is re-assigned
a number of 2. There are ways to control the pin creation order to work around the
problem of mixing copied and non-copied pins in the same component.

Advanced Design System 2011.01 - Graphical Cell Compiler

57

For details, see Controlling Pin Numbers. (gcc)

Advanced Design System 2011.01 - Graphical Cell Compiler

58

 Getting Started with the Graphical Cell
Compiler
The Graphical Cell Compiler (GCC) is a tool within Advanced Design System that makes
the job of adding parameterized artwork to a layout an easy process. The GCC can benefit
Productivity Engineers as well as Circuit Designers:

For Productivity Engineers, the GCC greatly simplifies developing a library of parts for
use by circuit designers. Various parts can be developed and debugged much faster
by using the GCC than by developing the AEL macros themselves. Of course, if
engineers do know how to program in AEL, they can use AEL to do further
customization.
Circuit Designers can use the GCC to create a special model quickly, without the need
to know any AEL.

 Parameterized Artwork Macro

A parameterized artwork macro (PAM) is a graphical layout model with specific parameters
that define its form. These parameters can control the length or width of some or all of the
shapes within the model, the repetition factors for the shapes, and so on can be
customized each time you place the model in a layout.

The basic steps for creating and using a PAM are:

Define the artwork graphically in a Layout window.
Define parameters to effect the artwork.
Compile the macro.
Set the parameter default values and save the macro.
Insert the new component (macro) in a layout.
Edit the parameters for that instance of the new component.

For an example that illustrates the basic steps of creating and using a PAM, see Basic PAM
Example (gcc).

 GCC Examples
In addition to the examples provided in this documentation, several Graphical Cell
Compiler examples are included in the program's examples directory. Examples are
improved frequently and new ones are added to the examples directory, so the files in
your program may differ from what is shown here. However, the basic path is the same.

To view the Examples directory:

Select File > Open > Examples from the ADS Main window to open the Choose an1.
Archived Example to open dialog box.
Select RF Board > gcc_examples_wrk.7zap.2.

Advanced Design System 2011.01 - Graphical Cell Compiler

59

 Graphical Cell Compiler Flow Chart
The following figure provides a high-level overview of the way the parts of the Graphical
Cell Compiler fit with the Advanced Design System to make a functional tool. The basic
use-model is similar to that of a compiled language, such as Basic, Pascal or C. The source
code is managed in the context of the Source Layout and is compiled into an executable
that is stored in the Component Library. You execute (insert) the component in the
context of a Destination Layout.

The two parts to the source for a PAM are graphical shapes and controls that operate on
the graphical shapes. Graphical shapes are created in a Layout window using the
Graphical Editor to insert, move, stretch, and otherwise manipulate the shapes. The result
is a set of graphical data that represents the defined shapes. Then controls are defined
from within the Layout window using the Macro menu commands (see Macro Menu).
These controls are used to create a set of control data. All the graphical and control data
is stored as part of the file when you save the design.

When you are satisfied with the source information, you compile it using the Macro
Compiler (also known as the Graphical Cell Compiler). The output is a Parameterized
Artwork Macro (an AEL Macro) that is saved on the disk.

Next, you define the parameter unit types, default values, and links (to simulation or
schematic data), that complete the component definition. The component can then reside
in a component library, ready for use.

When you insert a component created with the Graphical Cell Compiler in a schematic, the
component appears the same as any other component in the program. You can set the
component parameters using the standard component edit parameters dialog. What is
different is that behind the scenes there is an Insertion Engine that processes the various
control requests (such as stretch and repeat) to generate the requested graphical shapes.
When finished, the generated component appears in the Destination Layout window.

Advanced Design System 2011.01 - Graphical Cell Compiler

60

 GCC Flow Chart

 Macro Menu
The Macro menu is accessed from the menu bar of a Layout window.

Advanced Design System 2011.01 - Graphical Cell Compiler

61

Stretch opens a dialog box for defining the controls that adjust how shapes are moved or
stretched. See Stretch Control. (gcc)

Rotate/Move/Mirror opens a dialog box for defining the controls rotate, move, and mirror
shapes. See Rotate-Move-Mirror Control (gcc).

Repeat opens a dialog box for defining the controls that set the number of copies of the
graphical shapes that are inserted, and where the copies are placed. See Repeat Control.
(gcc)

Polar opens a dialog box for defining the controls that handle operations in the polar
(angle, radius) coordinate system. See Polar Control. (gcc)

Width opens a dialog box for defining the controls that handle width for the graphical
shapes that support width. See Width Control. (gcc)

User-Defined opens a dialog box for specifying a user-created AEL function to be used to
modify or create graphical shapes. See User-Defined Control. (gcc)

View/Edit opens the controls set for a given PAM, and enables you to reorder, modify, or
delete those controls. See the section Viewing Controls. (gcc)

Compile opens a dialog box for compiling the PAM and setting defaults and units, as well
as other model parameters. See the section Compiling a Macro. (gcc)

 Defining Artwork
When you use the Graphical Cell Compiler (GCC), you start by creating the artwork by
placing simple graphical shapes in a Layout window that the program uses to build an AEL
macro. This section provides the basics on creating artwork, by placing components and
working with the supported shapes. For details, refer to Schematic Capture and Layout
(usrguide).

 Supported Shapes

The supported shapes are: circle, polyline, path, rectangle (as a polygon), arc (as a
polyline), and text. Although these are not shapes, Connectors are supported, so you can
create components that have pins.

The shapes not supported are: construction line (except as a control line), trace,

Advanced Design System 2011.01 - Graphical Cell Compiler

62

component, and wire. While construction lines are needed to define reference points for
various controls, these are not included in the compiled output and are not displayed
when the macro is used. Traces are not supported, since a trace is a path that has been
turned into a component.

Note
It is not possible to include a component within a Parameterized Artwork Macro.

 Placing a Port or Shape

The menu and button locations for placing a port or shape are:

To place a port:

Select Port from the Insert menu or click the Port button on the toolbar.
Click in the Layout window to place the component.
Define edge and area ports. See Schematic Capture and Layout (usrguide) for more
information.

Hint
You can save time and mouse-clicks by rotating ports during placement, so that each is properly
oriented. If you find that a connector is not properly oriented, click Rotate before you place the port.
The connector rotates −45° each time you click the button. When the port is oriented properly, drag
it into position in the drawing area and click to place it.

To place a shape:
Select the shape name from the Insert menu or click the shape on the toolbar.
Following the instructions that appear in the status bar at the bottom of the window,
place the shape in the Layout window.

** Stretching a circle modifies its radius, making it larger or smaller. If you want to
make an oval, convert the circle to a polygon before running the compiler (Edit >
Modify > Convert to Polygon).

Paths are supported only to the degree that they are like a polyline. Other path
attributes (corner type, and so on) are not under parameterized control and are

Advanced Design System 2011.01 - Graphical Cell Compiler

63

the same as that of the source shape.
If you rotate a rectangle, or move any of its corners so that it is no longer a
rectangle, the program converts it to a polygon. Therefore, the resulting AEL
scripts treat rectangles as four-point polygons.
Similarly, arcs are converted into a polyline.

 Defining the Size of a Shape

When you place a shape, you can use the X,Y coordinates displayed in the status bar at
the bottom of the Layout window to help you draw the shape to the size you want (View >
Coordinate Readout). The two types of coordinates are: positional and differential.

Positional coordinates display the X,Y coordinates of the cursor position in relation to
the total window. By default, the large + in the center of the drawing area is 0,0.
Differential coordinates display the distance in X,Y that the cursor has traveled since
the last click. Set the starting point to 0,0 by clicking anywhere in the drawing area.

For example:

Select the rectangle on the toolbar.1.
Click in the Layout window to define the first point on the rectangle. The Differential2.
X,Y coordinate display reads 0.00, 0.00.
Move the cursor until the Differential X,Y coordinate display reads 200.0, 100.0.3.
Click. A rectangle 200 by 100 mil is placed in the window.4.

 Placing a Construction Line

To place a construction line in a Layout window, choose Insert > Construction Line,
then click twice in the drawing area to provide two points along the line.

 Editing Components

You can edit components in a Layout window (either before or after selecting the
component you want to edit) by using an Edit menu command or by clicking the
appropriate button on the toolbar.

Advanced Design System 2011.01 - Graphical Cell Compiler

64

Experiment with these commands and buttons until you feel comfortable with them.

 Experimenting with Parameter Values
To better understand how you can use your new component, try these experiments.

Try to select one of the rectangles in the component you have just inserted. See that1.
you used one rectangle (in the original artwork) to create a component that contains
two rectangles.

Open the Component Parameters dialog box (Edit > Component > Edit2.
Component Parameters) and reset the parameters to these new values:
length = 100 mil
width = 25 mil
number = 3
space = 25 mil
Click Apply to see how the component changes.

Reset the parameters to these new values:3.
length = 100 mil
width = 15 mil
number = 5
space = 10 mil
Click Apply to see how the component changes.

Try other settings to see how different settings change the component.4.

Advanced Design System 2011.01 - Graphical Cell Compiler

65

 Glossary for Graphical Cell Compiler
Term Description

Artwork Macro An Application Extension Language (AEL) script that creates graphical shapes in
Layout.

Artwork Instance A specific occurrence of an artwork macro placed in a layout.

Control A specific attribute used to modify artwork as it is placed in a layout. A given
control (for example: Stretch) may have a number of parameters that define its
behavior (for example: orientation, direction, length).

Fixed Artwork Layout graphics that are fixed in size and do not change from instance to instance.

Graphical Cell See Parameterized Artwork Macro (PAM).

Graphical Cell
Compiler

This product. It takes a layout with defined shapes plus controls that operate on
those shapes and generates a Parameterized Artwork Macro that can be used to
insert Parameterized Artwork instances in a design.

Parameter A specific aspect of a control that defines its behavior. For example, orientation,
direction, and length are all parameters of the stretch control.

Parameterized
Artwork

Layout graphics that may change in size or number depending on the parameters
provided at the time of insertion of the instance into a layout.

Parameterized
Artwork Macro (PAM)

Parameterized Artwork implemented as an AEL macro.

Scalable Artwork See Parameterized Artwork.

Shape A basic layout primitive such as a circle, rectangle, polygon, and so on.

Advanced Design System 2011.01 - Graphical Cell Compiler

66

 Hints and Tricks
This section provides a number of suggestions that can help when using the Graphical Cell
Compiler to create PAMs. As with any new tool, as you become familiar with it you
discover ways to do things that make life easier. The purpose of this section is to save you
time by sharing a few of these tricks before you spend the time to discover them on your
own.

 Selection and Control Definition
Since most all the controls require shapes to be selected as part of their definition and
many also require a control line construction line) being able to select the proper shapes
for a given control is important. There are times when this can be difficult. Take for
example the case of defining a multi-layer stack of shapes that all start the same size but
must be stretched in different ways depending on the layer and user-supplied parameter
values. You could find yourself with the Stretch dialog open and unable to accurately
select the shape or shapes from the stack that must go with that stretch.

Traditionally, one would use the Option/Layers dialog to turn off and on various layers to
make it possible to select the required shapes. But this process is rather tedious and slow.
In this case there is an easier way.

At this point it is important to remember just when various actions take place in the
define, compile, execute sequence. For a given control, the phases perform the following
functions:

Define phase - shapes to be operated on are picked by selection and associated with
a given control.
Compile phase - shape data (the actual (x,y) points) are collected.
Execution phase - shape data is tested (for example to see if it is intersected by a
control line) and modified by the control.

Given the above we can see that the location of the shapes does not matter during the
definition of the control.
This means that the stack of shapes can be spread around the screen so they don't lie on
top of one another. This makes the selection of particular shapes easy to do. Once all the
controls for that stack of shapes are define, the shapes can be moved or undo can be used
to put them back in their original location.

This technique can be used to solve a number of different selection problems during the
definition of controls. As long as everything is in it's proper location before the compile
step, moving shapes around will have no negative effects.

 Controlling Pin Numbers
In general, the component pins inserted by a PAM will be created in the same order that
the ports were found in the source layout. The search moves through the layers from 1 to

Advanced Design System 2011.01 - Graphical Cell Compiler

67

N, and for each layer picks up the ports in order which will be from the first ports inserted
up through the last ports inserted or modified/edited. That is, for a given layer, if the first
port inserted is edited, it will be re-created at the end of the list and will now be the last
port found on that layer.

Most of the time this order doesn't matter since the port numbers are saved in the PAM.
This means that as the pins are inserted, the default pin numbering (next lowest available
integer) will be modified with the saved port number. The one time where this may matter
involves cases where a port is part of a repeat control. See Preferred pin with the same
number exists (gcc) in GCC Error Messages (gcc).

As discussed, if an un-copied pin is created after a copied pin there can be a pin number
conflict. The easiest way to resolve this conflict is to change the port order in the source
layout so that all the fixed (un-copied) pins will be inserted and numbered before any of
the copied pins.

In order to control the pin creation order in the final component, you must insert the ports
in the source layout in their desired order. If for any reason a port is edited, it will then be
out of order. The easiest way to correct the order is to use the Edit Component
Parameters (ports are treated as components) and select each port and then Apply. Going
through the ports in the desired order will position them in the database in that order so
the resulting PAM will insert them in the desired order.

By controlling this order you can make sure that all the fixed pins are inserted and
numbered (with port numbers) before the copied pins. The copied pins will then be given
the next available default number skipping over any numbers already is use by an un-
copied pin.

 Testing for Minimum and/or Maximum Values
It is often the case that a given physical model is only valid for a certain range of
parameter values. While these constraints are often checked by the simulation model it is
sometimes desirable to have the physical model do some checking also. This may be
desired if an out-of-range parameter value (a zero for example) can cause an error in the
macro or cause the macro to generate invalid graphics.

While there is no direct support for parameter range checking in ADS, there is a technique
that can be used to at least constrain parameters to within certain ranges. This makes use
of the ?: syntax supported by AEL.

Let's say for example you have a Repeat control that is using the parameter count for the
repeat count field. So the dialog field would simply contain:
count

And let's say that count should never be less than one. If the user enters zero or a
negative number, use one. This could be forced with:
count < 1 ? 1 : count

Which is sort of equivalent to a small function that does:

if (count < 1)

Advanced Design System 2011.01 - Graphical Cell Compiler

68

 return(1)

else

 return(count);

If you further wanted to constrain count to be less than ten, you would add a second
nested test:
count < 1 ? 1 : (count > 9 ? 9 : count)

Which would be somewhat like:

if (count < 1)

 return(1)

else

 if (count > 9)

 return(9)

 else

 return(count);

Now this is clearly not a general-purpose solution. For example, if the parameter count is
used three different times then the range testing will need to be in place for each
occurrence. But in cases where some range testing is very important (to prevent divide by
zero errors for example) this method will work well.

 Advanced Value Testing and Error Reporting
The above example is for simple bounds checking. It does not allow for more complex
testing of parameter values nor does it provide for any sort of error/warning reporting to
the user. By using the User-Defined control it is possible to do more extensive testing of
the component parameters as well as provide messages to the user.

We start with the basic coupled-line model used elsewhere in this documentation. To the
existing two Stretch and one Repeat controls is has, we will add a User-Defined control. It
will be set to Replace List (and end with a return (NULL) statement so that it's a no-op)
and be passed all four of the component parameters: length, width, number and space.
The function called will be named: check_couple_values() . Then using the View/Edit
dialog and Cut/Paste the new control is moved to be the first control executed by the PAM.
This last step is very important because if it's left at the end of the list of controls, the
NULL return will remove the copies made by the repeat control.

There are two ways to pass the component parameters to the test function
check_couple_values() . The first it by-value which is the way parameters are typically
passed. If passed by-value the function can use the parameter values, but it can not
modify them back in the calling code. The other way (used here) is by-reference which
means that a pointer to the value is passed to the function rather than the value itself.
The function can still access the value, but if it modifies the value it will be changed back
in the calling procedure also. By passing the parameters by-reference, the testing function
can check AND correct the parameter values before the rest of the PAM executes.

To pass a parameter by-reference, you use the C language syntax of:
&name

To access the value of a parameter passed by-reference, you use the C language syntax
of:
*name

Advanced Design System 2011.01 - Graphical Cell Compiler

69

So the final control list for the coupled line model will be (the User-Defined control being
the only new control):

Control: User-Defined

 Returns: List Replace

 Function: check_couple_values(&length, &width, &number, &space);

Control: Stretch

 Direction: Both

 Length: length

 Offset: 100.0 mil

Control: Stretch

 Direction: Both

 Length: width

 Offset: 50.0 mil

Control: Repeat

 Direction: Parallel

 Parallel

 Number: number

 Distance: width+space

And the function called by the User-Defined control might look something like:

defun check_couple_values(lengthP, widthP, numberP, spaceP)

{

if (*lengthP < 100 mil) {

 de_error_dialog("length must be >= 100 mil, reset",

 NULL, TRUE); *lengthP = 100 mil;

}

if (*lengthP > 500 mil) {

 de_error_dialog("length must be <= 500 mil, reset",

 NULL, TRUE); *lengthP = 500 mil;

 }

// Same type of test for width, and space

if (*numberP > 5) {

 de_error_dialog("number must be <= 5, reset", NULL, TRUE);

 *numberP = 5;

 }

if (*lengthP < *widthP) {

 de_warning_dialog("Warning, length < width", NULL, TRUE);

 }

return(NULL);

}

You'll notice that all the parameter names have a P appended to their name. This acts as a
reminder in the code that these have been passed by-reference and must use the *name
syntax to access the value. A test for a minimum and maximum value for the length
parameter has been included. In each case, if the value is out-of-range, a message is
displayed to the user and the value is reset to be in range. Notice the use of units (mil) in
the expressions. Similar tests could be added for the width and space parameters. A test
has been added for number to show what a unitless value would look like.

Finally, a test has been added that goes beyond simple range checking. In this case it's

Advanced Design System 2011.01 - Graphical Cell Compiler

70

checking to make sure that the length of the line is always greater than it's width. If the
test fails, a warning (not an error) message is printed and the values are not changed.
While this may not be a realistic constraint, it serves to demonstrate the types of error
checking that can be performed in a User-Defined control.

When using this method for range checking, be aware of the limitations. First, it only
works on components built with the GCC. Second, the testing is only performed during
Layout component creation, which means that no testing would be done on the Schematic
equivalent for this component. Finally, great care must be taken when creating the tests
to make sure they are testing the right value (by-value, by-reference) in the right way
(with or without units) to get the desired results.

 Printing Shape Data
Sometimes when trying to debug a macro there is just no substitute for printing out the
intermediate values for shape data. While it is possible to edit the PAM and add print
statements in the code, it must be done manually and if you update and re-compile the
macro all the added print statements will be lost.

But there is a creative way to use the User-Defined control to print shape data without
actually making any changes to the data.

As discussed in the section on the User-Defined control the local variable _shape_data
contains the current (x,y) data for the shape being operated on. If the Function returns
field is set to Shape, and the x,y points field is simply set to _shape_data it has the effect
of assigning the current shape data to itself, that is, a null-operation. No change is made
to the data.

This gives us a hook into the AEL code where we can attach an additional AEL statement
to print out some values. We will use the identify_value() function as defined in the AEL
Guide. By using this with the fputs() function we can cause the values to be printed out to
the terminal window where all the ADS startup messages are printed.

If we want to print out the current (x,y) shape data, then set the User-Defined control as:
_shape_data; fputs(stderr, identify_value(_shape_data));

You could even give it a label by doing:

_shape_data; fputs(stderr, strcat("after stretch: ",

 identify_value(_shape_data)));

If multiple shapes are selected for this control, then each will be operated on and
therefore each will have it's current data printed.

And while you would continue to use _shape_data as the function value, you could print
the contents of any of the local variables defined in the User-Defined control, for example:
_cline_data or _shape_list.

In some cases you may want to print out a number of values, but you don't want to

Advanced Design System 2011.01 - Graphical Cell Compiler

71

clutter the output with labels.
An example might be to print out some of the variables for each step of a polar control.
Similar to the example above, you'd have an expression for the radius length, followed by
a semicolon, followed by something like this:

fputs (stderr, fmt_tokens(list(_angle_i, _angle, _radius)))

This would result in one line being printed per step, each line containing the step number,
the computed angle, and the computed radius. This would be repeated for each shape
operated on by this control.

 Define Parameter Order
As previously noted, component parameters are collected from the expression strings in
the various controls as they are processed. You have little or no control over the final
order as they will appear in the component insertion dialog. But what if it's really
important for component usability or understanding for the parameters to be in a specific
order?

As we saw in the previous hint (Printing Shape Data) it's possible to use a User-Defined
Control that performs no function as a hook to do other work. So if we make a User-
Defined control the first control in the list, and specify all the parameters in that control, it
will be the first control processed and we will have essentially defined the parameter
order. All we need is a way to use all the parameters in an expression in such a way that
it doesn't change any values or have any other side-effects.

One was to do this is to use the AEL list() function to make a list of the parameters that
we then never use for anything else. Looking at the Multi-Coupled Line example used
elsewhere in this documentation, we might define the first control as a User-Defined
control with the following function:
_shape_data; list(length, width, number, space)

By returning _shape_data for whatever shape we happened to select for this control, it
performs no modifications. The list() function contains all the parameters in the desired
order to be found during the compile step. But since we don't assign the returned list to
anything it is simply discarded. Of course any parameters not listed in this way will be
found as they appear by the compiler and added to the list.

The results of this technique is effective control over the component parameter order.

 Center of Rotation
All shapes rotate about the origin (0,0). If the shape is setting ON the origin it will sort of
spin in place. If the shape is some distance away from the origin the rotation will move it
about the origin (it's location AND orientation will change).

So let's say there are a number of shapes (Ports for example) which must all be rotated to
some angle. If they are in their final locations when the rotation is applied they will rotate
about the origin and be moved away from their desired location.

One trick to deal with this problem is to place all the shapes needing to be rotated on the

Advanced Design System 2011.01 - Graphical Cell Compiler

72

origin in the source design. Then you can define Rotate/Move/Mirror controls to act on
each shape. Since the actions are performed in the order they appear in the dialog, the
rotation is done first (about the origin) followed by the move which can place them in their
final location.

Of course if the shapes are also part of a stretch or repeat then having them all start at
the origin may make it impossible to place them in the current location with respect to a
control's construction line. For this case one might use a more traditional translate, rotate,
restore method.

You start with the shape at some known location in the source layout. You then use a
Rotate/Move/Mirror control to translate it to the origin. You can then use a second
Rotate/Move/Mirror to rotate it and restore it back to it's original location. It is then
properly rotated and in position for any subsequent controls to operate on.

The key point to remember is that in developing a complex PAM you are free to start the
shapes in any location and/or move them in any that positions them to allow you to
perform the operations you need. Don't be limited by methods that would place a shape in
it's final location and not move it during the execution of the PAM.

 Deletion of shapes. There may be times when the inclusion of a particular shape should
be optional. In other words, under specific condition you may wish to delete a shape or
shapes so that they do not appear in the final layout. It's possible to do this using the
User-Defined control.

As discussed in User-Defined Control (gcc), it is valid to have a User-Defined function
return NULL. This has the effect of deleting that particular shape. This means you could
define a conditional expression that would either delete the shape or have no effect on it,
for example:

(delete == TRUE) ? NULL : _shape_data

This same method could be used to delete the list of generated shapes (from a Repeat) by
setting the return type to Replace List and doing:

(delete == TRUE) ? NULL : _shape_list

Be aware that if you delete the list, then the macro will act as if it was never there and will
generate a shape from the current shape data array. So you may need to clear them both,
or, you may want to delete the current shape data before the repeat so that it doesn't
make the copies in the first place.

 Disable Controls
There are times when one is debugging a PAM that it would be real nice to be able to turn
off a control. You don't want to actually delete it (it's to much trouble to add it in again),
you just want to disable it so you can eliminate its effects.

While there is no built-in way to disable a control, there is a method you can use to
modify a control's action to cause it to do nothing. Most controls have a key parameter

Advanced Design System 2011.01 - Graphical Cell Compiler

73

that if set to zero will cause the control to have no effect on its shapes. For example
setting the stretch distance to zero will result in no stretch taking place.

But you don't want to simply change the control values to zero because you will then have
to re-enter the correct equation to turn them on again. What you can do is preface the
expression with a conditional expression that will result in the same thing. For example, if
the Stretch control has a Distance equation of:

length

Then inserting the following in front of the expression will have the effect of turning it off:
TRUE ? 0.0 : length

Which basically says: If TRUE then return(0.0). Since TRUE is always true, then it will
always use the value 0.0 for the Stretch Distance. The control has been disabled until you
remove the conditional again (or change the TRUE to FALSE to enable it and leave it easy
to disable in the future).

Here are some examples of how to disable some of the controls:

Stretch: set Stretch Distance to: TRUE ? 0.0 : [expression]
Repeat: set Number of items to: TRUE ? 0 : [expression]
Width: the same thing can be done with the Width control IF the Width Change is
Relative. A 0.0 would result in no change.
Rotate/Move/Mirror: the same method will work here also although you will need to
disable each of the three functions that is being used. If a given control is setup to do
both a rotate and a move and you only disable the rotate it will still do the move.
Polar: this one is a little more complicated. You need to set the Angle Start and Stop
to the same value so that it doesn't make any iterations. For example, if Start was
0.0 and Stop was 2*PI, you might set the Stop to:
TRUE ? 0.0 : 2*PI

User-Defined: as previously discussed (in the section about deletion of shapes),
having the function return the shape data unmodified will have the effect of doing
nothing. So to disable a User-Defined control one could set the function as:
TRUE ? _shape_data : [function call]

 Multi-Model Drivers

Note
This section is for very advanced library builders who are familiar with AEL and the procedures for building
libraries of models for use by designers.

While is should be possible to create a PAM that will support any physical model you can
think of, sometimes the effort to design it is just to great and instead you create two or
more simpler models. A multi-fingered fet might be an example of this. Due to the
physical properties it may be just too hard to make one model that can handle the one
finger case and the 2-n finger case. So, you build two models: the one finger model and
the 2-n finger model.

The problem is that you would like to have just a single fet model in the library, not the
two special-case models. What you would like is a single parameterized point-of-control

Advanced Design System 2011.01 - Graphical Cell Compiler

74

that would call the correct special-case model as needed.

Again, this assumes you already understand how to create library elements for use in
ADS. This section is not going to provide the details on the use of the create_item() ,
create_parm() , and function calls that are used to do this. We will assume you have
defined the fet model for the library, and you have specified that the library element will
call an artwork procedure named fet_artwork() with two parameters: number of fingers,
and length (of the fingers).

You now need to create the fet_artwork) procedure such that it can take the provided
parameters and call the correct special-case model. Such a procedure might look
something like this:

defun MWTD_FET_ARTWORK(finger, length)

{

if (is_string(finger))

 finger = evaluate(finger));

if (!is_integer(finger))

 finger = int(finger);

if ((finger < 1) || finger > MAX_FINGER) {

 /* print an out-of-range error message */

 return;

 }

if (finger == 1)

 pam_finger1(length);

else

 pam_fingerN(finger, length);

Advanced Design System 2011.01 - Graphical Cell Compiler

75

 Parameterized Artwork Macro (PAM)
Controls
 Contents

Defining Controls (gcc)
Stretch Control (gcc)
Rotate-Move-Mirror Control (gcc)
Repeat Control (gcc)
Polar Control (gcc)
Width Control (gcc)
User-Defined Control (gcc)
Viewing Controls (gcc)
Temporary Control Variables (gcc)

Advanced Design System 2011.01 - Graphical Cell Compiler

76

 Defining Controls
After defining the artwork, you use the Graphical Cell Compiler to define the controls that
are available on the finished Parameterized Artwork Macro (PAM).

The basic steps required to define a control are:

Place and select a control (construction) line to act as the reference for the control.
Select the shape(s) that the control applies to.
Select the control (stretch, and so on).
Define the control parameters.

This section provides details for control precedence, theory of operation, control lines, and
the difference between control and component parameters.

 Control Precedence
The order in which you define controls is important.

You must define Stretch controls first, since Stretch controls operate on the original
shape, not on copies of the shape.
You can perform multiple operations on a given shape (such as changing both length
and width), and then after the shape is correct, use Repeat and Polar controls to
make copies of it.
Rotate/Move/Mirror controls can operate on the original shape, and on copies; you
can rotate/move/mirror the original shape, and you can rotate/move/mirror the
results of copy operations.

Not all controls are required, but the suggested order of implementation is shown in the
following figure.

Advanced Design System 2011.01 - Graphical Cell Compiler

77

 Order of Control Precedence

 Theory of Operation
To understand why controls act the way they do you must understand the different data
variables allocated to each shape in a generated macro. Each shape has (at least) these
variables assigned to it:

i_ < number >Initial Variable = shape's original data
p_ < number >Primitive Variable = shape's modified data
l_ < number >List Variable = list of generated shapes' data
r_ < number >Rotation Variable = shape's rotation value
w_ < number >Width Variable = shape's width or height
where:
< number > is a value assigned at compile time to create a unique name.

When the macro executes, the Initial and Primitive variables are assigned the shape's
initial location data. For details, see the section Code Walkthrough. (gcc)

Initial Variable The Initial variable is never modified. It provides a reference so
that controls can determine whether the original shape was cut by a control line and
if so, where. This means that a shape's response to a control acting on it does not
change when a previous control moves or rotates it on/off a control line. For
example, if you define a Stretch control to modify the length of a shape, you can be
sure that it stretches as defined even if a previous Mirror control moves it away from
the stretch control line.
Primitive Variable The Primitive variable is where all modifications to the shape

Advanced Design System 2011.01 - Graphical Cell Compiler

78

take place. When a shape is resized, rotated, mirrored, moved, and so on, it is the
points in the Primitive variable that get modified.
List Variable The List variable contains the results of any copy operations as
defined by a Repeat or Polar control. In other words, if a control makes copies of the
shape defined in the Primitive variable, the original and the copies are placed in the
List variable.
Rotation Variable This variable contains the shape's rotation value for shapes like
ports and text.
Width Variable This variable contains the shape's width (for paths) or height (for
text) and is only modified by the Width control.

 What is Output

When it comes time to output the results of the macro, a test is performed on the List
variable. If the List variable contains a list of shapes, the list is output to generate the
shapes in the destination layout. If the List variable is empty, only the Primitive variable is
output. The macro never outputs the contents of both variables. This explains why a
Stretch performed on a shape after a Repeat does not appear to have any effect. The
Stretch operates on the Primitive variable, but at output time, the program uses the List
variable, which contains the copies created by the Repeat and a copy of the original
shape. Any modifications made on the Primitive variable by the Stretch are lost.

 Multiple Repeats

When you perform more than one repeat on the same shape, the Repeat controls use the
Primitive variable as the source for the shape data, placing the results in the List variable.
If the initial shape does not move between Repeats, multiple copies of the shape are
made at the starting location. That is, if you perform a Repeat Parallel followed by a
Repeat Perpendicular, two copies of the shape are made at the starting location: one
generated from the Repeat Perpendicular and one generated from the Repeat Parallel.

Modifying Data Between Repeats A shape's data (in the Primitive variable) can be
modified between Repeats. Repeats use the same source to copy, so if that source is
changed (by a Stretch or Mirror control, for example) after one repeat, the next repeat
makes copies of a different-looking shape.

 Modifying the Contents of Primitive Variable & List Variable Data

The Rotate/Move/Mirror control operates on both the Primitive variable and the List
variable. This means that you can modify a shape either before or after you copy it.

Rotating a shape and then repeating the shape:

Advanced Design System 2011.01 - Graphical Cell Compiler

79

Repeat a shape and then rotate the results of the repetition:

As the example shows, if you modify (rotate) the shape before you copy it, the Repeat
control makes copies of the rotated shape. If you copy the shape before you rotate it, the
Rotate control operates on the list of shapes as a unit. The Rotate control also modifies
the Primitive variable, but because the List variable contains a list, the modification to the
Primitive variable is not visible unless you do another Repeat on the same shape. In that
case, you do see the modification in the results of the second Repeat.

 Using Control Lines
Control lines (construction lines) provide the reference for Stretch, Repeat, and Polar
controls. When you define one of these controls, you must select both the shape that you
want to manipulate/copy and the control line that you want to use as a reference. If you
forget to select a control line, the program prompts you to do so.

With a Stretch control, you choose whether you want the stretch to be in the positive or
negative direction with respect to the reference line.

With a Repeat control, you choose whether you want the repeat to be parallel or
perpendicular to the reference line.

With a Polar control, a control line defines where a polyline or path is cut for a stretch-like
operation. It does not have any effect on the rotation angle (0° is still the x-axis) or the
rotation origin (which is 0,0).

A control line does not have to intersect a shape.

For example, if a shape is to one side of the control line and is included in a stretch, the
entire shape moves by the stretch amount, rather than being stretched (see Stretch
Control (gcc)).

 A control line can be at any angle; a control line is not limited to 90° angles.

Advanced Design System 2011.01 - Graphical Cell Compiler

80

 Positive and Negative Stretch Directions

When you select a control line, you use the Stretch Control Definition dialog box to
indicate the direction (positive or negative) in which you expect the stretch to occur
relative to the selected line.

For a horizontal control line, positive = up
For a vertical control line, positive = to the right

The following figure illustrates stretch direction with respect to the horizontal or vertical
control lines.

 Determining Stretch Direction

The point at which the program sees a line as moving from horizontal (positive = up) to
vertical (positive = right) is when the angle of the line is greater than 45°.

The stretch direction for a line between 45° and 90° can appear to be backward, as shown
below. Just remember that the line is at an angle greater than 45°, even though it may be
hard to see the slight difference.

Advanced Design System 2011.01 - Graphical Cell Compiler

81

 Parallel and Perpendicular Repeat Directions

When you select a control line, you use the Repeat Control Definition dialog box to
indicate the direction (parallel or perpendicular) in which you can expect the copy to occur
relative to the selected line.

Parallel = parallel to the control line
Perpendicular = perpendicular to the control line
Both = an array-like grid

As with a Stretch control (see Positive and Negative Stretch Directions):

For a horizontal control line, positive = up
For a vertical control line, positive = to the right
And vertical is > 45°

Entering a positive or negative number determines the direction in which the copy is
placed along the selected axis.

Advanced Design System 2011.01 - Graphical Cell Compiler

82

If the control line is horizontal: Parallel goes left/right; Perpendicular goes up/down.

If the control line is vertical: Parallel goes up/down; Perpendicular goes right/left.

When the control line is at an angle: Parallel is still parallel to the control line and
Perpendicular is still perpendicular to it.

Advanced Design System 2011.01 - Graphical Cell Compiler

83

Repeating Both combines a parallel and a perpendicular copy, even at an angle.

 Defining Parameters
When using the Graphical Cell Compiler, you work with Control Parameters and
Component (model) Parameters.

 Control Parameters

Control parameters are the fields within a control dialog box. For example, in the Stretch
Control Definition dialog box, the control parameters are Distance and Offset.

You can use any one of the parameters listed in a control parameter field:

 Constant
Example: 100
Comments: This value can not be edited when you use the macro.
 Variable

Advanced Design System 2011.01 - Graphical Cell Compiler

84

Example: length
Comments: A variable appears as a component parameter; its actual value is
supplied by the user.
 Expression
Example: size*100
Comments: Any undefined values appear as component parameters (size, in this
example). The actual value is supplied by the user. Expressions enable you to
associate component parameters.
Example: sin(angle)
Can include AEL function calls.
 AEL code fragment using the ?: syntax from C (also available in AEL)
Example: size < 100 ? 100 : size * 100
which is approximately equivalent to:

if \(size < 100\) then

 length = 100;

else

 length = size * 100;

but because it does not require a temporary variable length it is an expression that
can be used as a control parameter.
Comments: Any undefined values appear as component parameters (size, in this
example). The actual value is supplied by the user. Enables complicated calculations.
See AEL (ael) for syntax.

User-Defined Function
Example: build_shape(length, width);
Comments: A user-written AEL function to support calculations more complicated than can
fit in a field of a control dialog. See User-Defined Control (gcc) for more information about
including a user-defined function.
 Component Parameters

Component (or model) parameters are the parameters you edit to customize an instance
of a given component or model. These parameters appear in these locations.

In the Component Parameters dialog box (Edit > Component > Edit Component
Parameters).
In the Compiler dialog message area.

Advanced Design System 2011.01 - Graphical Cell Compiler

85

In the Design Definition dialog box Select Parameters list (in the Parameters panel,
where you set default values and units when creating a PAM).

 Controlling Multiple Shapes on Different Layers
If you select a shape to be included in a control, it does not matter what layer the shape is
on. A control operates on any number of shapes, on any combination of layers.

Advanced Design System 2011.01 - Graphical Cell Compiler

86

In the original design, the three shapes selected for a Stretch control are on three
different layers. The control is defined with a length of 100 mil and an offset of 100 mil.

When the model is used and the length reduced to 50 mil, the top shape is moved
(because the control line did not touch the original shape), and the other two shapes are
stretched back.

When the length is increased to 150 mil, the top shape is moved again, and the other two
shapes are stretched.

For details on using a Stretch control, refer to the section Stretch Control. (gcc)

Advanced Design System 2011.01 - Graphical Cell Compiler

87

 Stretch Control
You can use the Stretch control to change the size of the graphics in a Parameterized
Artwork Macro (PAM). Stretching takes place relative to a control line that may be at any
angle. You can stretch that shape in more than one direction by placing more than one
stretch control on the same shape.

As with many controls, you must identify the shape(s) that you want to effect and add a
control line (construction line) before you define the stretch parameters.

This section describes how you can use the placement of control lines and the selection of
stretch parameters to manipulate shapes within a PAM.

 Stretch Direction
You can define stretching as Positive, Negative, or Both. When you define stretching as
Both, half of the requested distance is stretched to each side of the control line.

Advanced Design System 2011.01 - Graphical Cell Compiler

88

 Stretch Orientation
Stretch orientation is defined relative to the stretch control line (construction line).
Stretching takes place perpendicular to the control line.

If the control line is horizontal, stretching goes up/down.

If the control line is vertical, stretching goes left/right.

Even when the control line is at an angle, stretching is still perpendicular to it.

Advanced Design System 2011.01 - Graphical Cell Compiler

89

For details on positive and negative directions with regard to control lines, see Using
Control Lines. (gcc)

 Moving a Shape with a Stretch
A control line does not have to intersect a shape. If a shape is to one side of the control
line and is included in a stretch, the entire shape moves by the stretch amount, rather
than being stretched.

All of original shape is to one side of the control line. After a positive stretch, the entire
shapes has moved in the positive direction.

The Stretch control moves vertex points. When a control line intersects a shape, the
vertices on the designated (positive or negative) side of the control line move, stretching
the shape.

When the entire shape is to one side of the control line, all of the vertex points on the
shape move in the same direction, by the same amount. This moves rather than stretches
the shape. A stretch control is not limited to 90° angles, but can be at any angle.

Advanced Design System 2011.01 - Graphical Cell Compiler

90

 Distance
Distance is the amount to stretch the shape(s). It can be a simple variable name (such as
length), or an expression that refers to other values. The amount of stretch can be either
positive (vertex points move away from the stretch control line) or negative (vertex points
move toward the stretch control line).

 Offset
Offset is the amount to subtract from the entered length to compensate for the original
size of the shape. This makes it possible for you to create a PAM using a shape with some
size (so it is easy to work with), and use the PAM without needing to know its initial size.

For example, you create the PAM using a rectangle of length 100 and an offset of 100.
When you use the PAM and enter a length of 50, you get a rectangle with a total length of
50 rather than 150. That is,

Advanced Design System 2011.01 - Graphical Cell Compiler

91

distance = length
offset = 100

is the same as:

distance = length - 100
offset = 0

 Shape Response
Different shapes respond differently to a stretch. Most shapes are defined by vertex points
that can be moved by the Stretch control. Polylines and paths are different, in that these
are defined by a set of control points that the line or path follows. Polylines have no width
to modify; a path's width is defined with respect to the control points. There are no vertex
points to move, so a Stretch control cannot modify the width of a path.

Stretching a circle in any direction simply increases its diameter. But if you convert the
circle to a polygon (Edit > Modify > Convert to polygon) first, the polygon stretches just
like any other polygon.

Different Shapes Responding to a Stretch shows how different shapes respond to stretch
using both a vertical (Length stretch) and horizontal (Width stretch) control line.

 Different Shapes Responding to a Stretch

Advanced Design System 2011.01 - Graphical Cell Compiler

92

 Repeat Control
This section provides details on how the placement of control lines and the selection of
repetition parameters can be used to duplicate shapes within a PAM.

You can use the Repeat control to define the number of copies of one or more shapes in a
Parameterized Artwork Macro (PAM) that are made when you place the PAM in a layout.
Repetition takes place relative to a control line, which may be at any angle.

As with many controls, before you define the repetition parameters, you must first identify
the shape(s) that you want to effect and add a control line (construction line).

 Repeat Direction
Repeat direction is defined relative to the repeat control line (construction line). Repetition
can take place parallel to a control line, perpendicular to a control line, or in both
directions.

If the control line is horizontal, Parallel goes right/left, Perpendicular goes up/down.

Advanced Design System 2011.01 - Graphical Cell Compiler

93

If the control line is vertical, Parallel goes up/down, Perpendicular goes right/left.

Even when the control line is at an angle, Parallel is still parallel to the construction line
and Perpendicular is still perpendicular to it.

Repeating in Both directions generates an array-like grid of the repeated shapes.

For details on positive and negative directions with regard to control lines, see Using
Control Lines. (gcc)

Advanced Design System 2011.01 - Graphical Cell Compiler

94

 Number of Items
This parameter enables you to define how many times the shape or group of shapes are
placed when you use the PAM in a layout.

 Repeat Distance
Repeat Distance is the distance from the beginning of one occurrence to the beginning of
the next. This distance is similar to a wavelength in that it includes both the length of the
shape and the space between the end of the first shape and the beginning of the second
shape.

When step distance is negative, the shapes repeat in the opposite direction:

Advanced Design System 2011.01 - Graphical Cell Compiler

95

 Rotate-Move-Mirror Control

This section provides details for using the Rotate/Move/Mirror parameters to manipulate
shapes within a PAM.

You can use the Rotate/Move/Mirror control to rotate, move, and mirror (flip) graphics in
a Parameterized Artwork Macro (PAM). Operations are performed in the following order:

Rotation about a point (default is 0,0)
X and/or Y offset (move)
Mirror about the X-axis
Mirror about the Y-axis

Rotation is performed relative to a point defined in the source layout. The default is the
origin (0,0) in the source layout. An arbitrary center for rotation can be defined by the
intersection of two selected construction lines.

Mirror about the X-axis and mirror about the Y-axis are performed relative to the X,Y axis
that goes through the defined point in the source layout (default is 0,0).

Advanced Design System 2011.01 - Graphical Cell Compiler

96

 Rotation Angle
You can set the angle of rotation to be in either radians or degrees. The default is
degrees.

The parameter you enter in this field enables you to set the selected shape at an angle
when you place the shape in a Layout window. Exactly how the shape behaves when you
insert it depends on where the shape was positioned relative to the defined center (default
is 0,0) when the control was created.

For example (using the default of 0,0):

If you place the shape at 0,0 when you create the PAM, the Angle offset parameter
appears to spin the shape.

If the shape is offset from 0,0 when you create the PAM, the Angle offset parameter
produces a different effect.

If you are designing a more complicated PAM with several shapes that you want to rotate,
and those shapes are in different locations, you could have a problem. It would be
impossible to center all of the shapes on 0,0 in their respective locations. There are a
number of easy ways to deal with this:

You can define an alternate center for rotation. This is done by inserting two
construction lines in the source layout that intersect. Select these construction lines
along with any shapes to be operated on. Their intersection is used as the center
(instead of the default of 0,0) for all actions.
A shape does not have to start in its final position. You can place it at 0,0, apply
rotation, then apply a move to relocate the shape to its desired position.
You can move a shape to 0,0, apply rotation, then move the shape back to its
original position.

In any case, after you move a shape into its proper position relative to the other shapes,
you can apply any number of stretch, repeat or other operations to it.

Advanced Design System 2011.01 - Graphical Cell Compiler

97

 Move
The parameters you enter in these fields enable you to move the shape when you place
the shape in a Layout window. These parameters move a shape relative to the o riginal
shape. Exactly how the shape behaves when you insert it depends on where the shape
was positioned relative to the defined center (default is 0,0) when the control was created.

For example (using the default of 0,0):

If you place the shape at 0,0 when you create the PAM, the X and Y offset
parameters move the shape as shown here.
If the shape is offset from 0,0 when you create the PAM, the X and Y offset
parameters produce a different effect.

The relative movement is the same, but the absolute position of the shape is
determined by the starting position (relative to 0,0).

 Mirror
The parameter you enter in these fields enable you to mirror the shape when you insert it
in a Layout window.

Advanced Design System 2011.01 - Graphical Cell Compiler

98

As with the other Rotate/Move/Mirror parameters, exactly how the PAM behaves when you
insert it depends on where the shape was positioned relative to the defined center (default
is 0,0) when the control was created.

 Control Order
You can use a Rotate/Move/Mirror control on shapes either before or after you use other
controls. This control can operate on the original shape, or on the results of another
control.

For example, you can rotate a shape and then repeat the shape.

or you can repeat a shape and then rotate the results of the repetition.

Advanced Design System 2011.01 - Graphical Cell Compiler

99

 Polar Control

This section provides details on how the placement of control lines and the selection of
polar parameters can be used to manipulate shapes within a PAM.

You can use the Polar control to define operations in the polar (angle, radius) coordinate
system.

As with many controls, before you define the polar parameters, you must first identify the
shape(s) that you want to effect and add a control line (construction line).

This control functions similarly to the Stretch and Repeat controls, but the way the polar
control operates on shapes is dependent on the type of shape and the placement of the
Polar control line (construction line).

Advanced Design System 2011.01 - Graphical Cell Compiler

100

 Angle Sweep
You can set the angle of sweep to be in either radians or degrees . Because all AEL trig
functions work in radians, the default is radians. If you want to use degrees, you must use
the AEL function rad() each time you reference an angle in a trig function, to convert it to
radians.

 Start

The equation or value you enter in this field defines the starting value for the Angle
sweep.

 Stop

The equation or value you enter in this field defines the ending value for the Angle sweep.
You can define a sweep as greater than 360° from the start. In that case, the sweep goes
around more than once.

 Step

The equation or value you enter in this field defines the resolution of Angle sweep. A very
small step produces a smooth surface for a curved shape; a large step creates line
segments.

Note
The current value of Angle sweep is saved in the variable _angle , that can be used in expressions for the
Radius , X offset , and Y offset parameters. For a list of the variables that can be used in these
parameters, see Using Variables in the Radius & Offset Parameters. For more details on using expressions,
see Defining Parameters. (gcc)

 Radius and Incremental Offset

Advanced Design System 2011.01 - Graphical Cell Compiler

101

The Radius and Incremental Offset parameters are unique in that these parameters are
evaluated by the program more than once. Most parameters are evaluated once and then
used, but these parameters are evaluated at each Step, and then used appropriately.

 Radius as a Function of Angle

The equation or value you enter in the Radius field defines the change in radius from 0.0
to the initial position of the shape. To produce a spiral-like shape, define the radius as a
function of Angle sweep.

Radius as a function of angle allows for some unique shapes to be defined. For example,
these settings produce the illustrated shape:
Delete Ends: True
Units: Radians
Start: 0.0
Stop: PI*2
Step: PI/32
Radius: sin(2*_angle)*200 mil

Advanced Design System 2011.01 - Graphical Cell Compiler

102

 Incremental Offset as a Function of Angle

The parameters you enter in the X offset and Y offset fields enable you to modify the
location of each point that results from the angle and Radius parameters, specifically, the
point at which each Step ends. In the square spiral in the following example, each corner
is one of these points.

The first spiral is a radial spiral with a step size of PI/8.0. A smooth radial spiral requires a
smaller step size; a square spiral, such as in this example, requires that you change the
step size so that there are only four points per cycle: 2.0*PI/4.0 (2p = 360°).

This gives a four-sided spiral. But the spiral is not square because what works for a
rounded spiral, where each point is placed at an ever-increasing radius from the center,
does not work for a square spiral.

To square things up, you must use to X and Y offsets to apply a small delta (a function of
the spiral parameters and the current angle) to each point (corner) to push each point
along the direction of the side.

Advanced Design System 2011.01 - Graphical Cell Compiler

103

For more details on using offsets, see the section First Spiral Example. (gcc)

 Shape Response
The polar control acts like both the Stretch and Repeat controls, depending on various
factors. The only two shapes that can be stretched are paths and polylines (shapes
defined by a set of control points), and these shapes stretch only if they are touched or
cut by a Polar control line (construction line).

All other shapes (those whose outline or size is defined by a set of vertex points), and
paths/polylines not cut by a control line, are copied by the polar control.

 Using Paths
Paths support three corner types: mitered, square, and curved. Mitered and curved corner
types require a certain amount of distance between the control points to be drawn
correctly. If the space is too small, the results are not ideal. Because of this, when
working with paths, use the square corner for a Polar stretch with a small step.

Advanced Design System 2011.01 - Graphical Cell Compiler

104

 Delete End-Points
In the context of a polar operation, Delete End-Points (toggled at the top of the Polar
Control Definition dialog box) means to delete the end-points of a stretched, two-point
path or polyline.

In general, a polar stretch on a path or polyline preserves the parts of the shape on either
side of the polar control line. This is consistent with the way a normal stretch operates on
shapes, but there may be times when you do not want this to happen. All initial shapes
must have some size, but you may want to generate a shape that does not have any
remnant of the initial starting shape. This is similar to using Offset in a Stretch control to
compensate for the initial size of a shape (see Offset (gcc)). In this case, if:

the shape is a path or polyline,
and
the initial shape has only two points,
and
the operation is a stretch (the control line touches or cuts the shape),
then the Delete End-Points option removes the initial points from the resulting shape.
This feature is very useful when you create spiral-like shapes where you do not want
the straight remnants from the initial path hanging on to the ends of the generated
shape. Remember, though, that Delete End-Points works only on two-point paths and
polylines.

Advanced Design System 2011.01 - Graphical Cell Compiler

105

 Using Variables in the Radius & Offset Parameters
A number of temporary variables have been defined to hold commonly-needed values for
use in the Radius and Offset parameters. These variables act as a shorthand so that you
can use the variable in an expression rather than repeating the possibly lengthy
expression that defines it.

_angle (as calculated by the Angle expression for the current step)
_radius (For use in the Offset field only) (as calculated by the Radius expression for
the current step)
_angle_start (as calculated by the Start expression)
_angle_stop (as calculated by the Stop expression)
_angle_step (as calculated by the Step expression)

_angle_i (step number that increments from 0 to

The convention of a leading underscore (_) for global variables is the same as is used by
the ADS Analog RF Simulator (ADSsim).

For more details on using expressions, see Defining Parameters. (gcc)

Advanced Design System 2011.01 - Graphical Cell Compiler

106

 User-Defined Control
You can use the User-Defined control to perform operations that you can't do with the
controls and shapes defined by the Graphical Cell Compiler.

The User-Defined control actually fills the gap for two types of operations:

Creation of shapes that are not supported by ADS or that can't be formed with
existing shapes modified by existing controls (such as, an ellipse).
Creation of a shape-modifying control of your own design to perform some operation
beyond those supported by the base system (such as, using splines to smooth the
outline of a polygon).

Using the User-Defined control requires a knowledge of programing in AEL. You supply an
AEL function that accepts whatever parameters you want to supply the shape with and
returns the (x,y) point data for the created/modified shapes. You can create almost
anything. If the AEL code can be written to do it, a PAM can be created to insert it.

The general flow for the setup of a User-Defined control is the same as that for other
controls:

Select one or more shapes to be operated on. This defines the type of shape, what
layer it is on, and (if used) the initial data-points of the shape.
(Optional) Select a construction line as a reference for the control's operation.
Define the control which includes: what parameters are to be passed to the user-
written function, the name of the function to be called, and what type of data is to be
returned by the function.

The function field of the User-Defined control is basically just like any other expression
field in any of the other controls except that there are a few more restrictions on it. In the
other controls the expressions must evaluate to a simple numeric (integer or real) or
boolean type. In this case, the results of the expression generally must be (x,y) point data

Advanced Design System 2011.01 - Graphical Cell Compiler

107

for a shape, or possibly the data for a list of shapes.

 Parameters
The parameters to the user-written function can be anything allowed by AEL syntax:
constants, variables, expressions, etc. As with the other controls, any unrecognized
variable is taken as a component parameter to the macro.

In addition, a number of pre-defined variables (like the ones available in the Polar control)
can be passed to the user-written function:

 _cline_data

This is 2-element array of (x,y) values (as in [[x1, y1], [x2, y2]]) which define the
construction line (if included, that is selected, when the control was defined) for this
control. The position and slope of the construction line can then be used to control how
the function operates on the shape, much in the same way that the construction line
specifies the direction of movement in the Stretch control or the direction of copy in the
Repeat control.

For example, using _cline_data to compute the slope of the construction line could look
something like:

decl x1, y1, x2, y2;

decl slope;

x1 = _cline_data[0,0];

y1 = _cline_data[0,1];

x2 = _cline_data[1,0];

y2 = _cline_data[1,1];

if ((x2 - x1) == 0.0)

 slope = 999999. * vertical line, infinite slope */

else

 slope = (y2 - y1) / (x2 - x1);

 _shape_type

The type of shape being operated on. One of the following pre-defined AEL constants:

PAM_PATH_TYPE
PAM_POLYGON_TYPE
PAM_POLYLINE_TYPE
PAM_PORT_TYPE
PAM_TEXT_TYPE

This is probably most useful as an error check to make sure the selected shape is
appropriate for the user-written function. For example, it may well be an error case to
pass a text element (which only has one (x,y) point) to a function which operates on
polygons (which must have at least three (x,y) points).

An error check might look something like:

Advanced Design System 2011.01 - Graphical Cell Compiler

108

if (_shape_type != PAM_POLYGON_TYPE) {

 de_error_dialog("Shape is not a polygon");

 return(NULL);

 }

 _shape_data

The current (x,y) data points for the shape being operated on. This data can be modified
from the original shape if it has been operated on by previous controls (such as, Stretch).

You would pass the _shape_data parameter to the user-written function if your function
was designed to modify a graphic shape. For example, let's say the function was written
to rotate a shape about a user-defined point rather than about the origin (0,0) as the
Rotate/Move/Mirror control does. Such a function would take the current _shape_data,
perform the rotation operation on it controlled by some number of additional parameters,
and return the modified data points.

On the other hand, if the function was written to create a new graphic shape based on the
other parameters passed to it (an ellipse for example) then it would not need the
_shape_data parameter at all. Or, it might only use the _shape_data parameter to get an
initial (x,y) location for the creation of the new shape but ignore the rest of the data
points.

If the _shape_data parameter is passed and how the data points contained in it are used
is totally up to the requirements of the user-written function.

The shape_data parameter is a two-dimensional array of values. The first dimension is the
data point number (from 0 to the number of points - 1) and the second dimension indexes
the x and y value (0 for x, 1 for y). The _array_upperBound() function is used to access
the number of data points in the array. So, a simple iterative loop to add a fixed (x,y)
offset to each point of a passed in shape might look something like this:

decl i;

for (i=0; i<=array_upperBound(_shape_data, 1); i++) {

 _shape_data[i,0] += x_offset;

 _shape_data[i,1] += y_offset;

 }

return(_shape_data); * return the modified data

 _shape_init

The initial (x,y) data points for the shape as it originally existed in the source layout. This
structure is never modified by the PAM so it is always possible to get the original points if
needed.

These points are important because the other controls that use a construction line as a
reference (Stretch, Repeat, Polar) compare the ORIGINAL shape data with the
construction line to determine direction, orientation, intersection, etc. That way the
specified action is not changed because a shape was moved on or off a construction line
by other controls.

If you are creating a control that you want to work in the same way as the built-in

Advanced Design System 2011.01 - Graphical Cell Compiler

109

controls then you will want to use the _shape_init point data for any tests with respect to
the reference construction line.

On the other hand, you may specifically want a control which will act on a shape based on
previous actions performed on it. In that case you would want to use the _shape_data
(described above) for all point data tests with respect to the reference construction line.

 _shape_list

The current list of sets of (x,y) data points (the result of a Repeat or Polar control) for the
shape being operated on.

Passing the _shape_list parameter to the user-written function would happen when the
purpose of the function is to modify a list of shapes that have been created by another
control. For example, one may want to take the shapes generated by a Repeat control and
rotate each one by some amount dependent on which copy it is.

The shape_list parameter is a list of two-dimensional arrays (like _shape_data). The
_listlen() function will provide the length of the list (number of shapes) and the nth()
function will access the individual shapes (zero relative). So, a simple loop to access all
the shapes passed to a function in the _shape_list parameter might look something like:

decl n;

 decl i;

 decl shape;

 decl shapes; * list of modified shapes to return */

 shapes = NULL;

n = listlen(_shape_list);

for(i=0; i<n; i++) {

 shape = nth(i, _shape_list);

 * operate on array of (x,y) points in shape */

 shapes = append(shapes, list(shape));

}

 return(shapes);

 _shape_layer

The ID number for the layer the shape is on.

Knowing the Layer ID for a shape allows the AEL function to perform layer-specific
operation on the shapes. It may also be useful if a layer mapping function is to be
performed, taking the initial layer, mapping it to a different layer, and returning that value
to be use when the shape is inserted (see Return Value).

There is one important point to be aware of in using the above shape variables. While AEL
syntax does allow for any function parameter to be passed by-reference (using the
"&name" syntax) doing so for any of the above variables will NOT allow you to modify the
actual shape's values. That is because the above variables are already copies of the
shape's data and even if they were modified the contents are NOT copied back to the
original shape's values.

 Function Call

Advanced Design System 2011.01 - Graphical Cell Compiler

110

The function call as defined in the User-Defined dialog is really just any AEL expression
that generates an array of (x,y) points (for the case of a simple shape) or a list of shapes
(for the list case). In most cases this will be a function call since it will require multiple
lines of AEL code to perform the desired operation. But there are cases where the
expression entered could be simpler:

 NULL

This would have the effect of deleting the shape or list of shapes. This could be used as
part of a conditional expression (using the ?: syntax) to optionally delete a shape, for
example:

(delete == TRUE) ? NULL : _shape_data

Which is functionally equivalent to a function that did:

 if (delete == TRUE)

 return(NULL);

else

 return(_shape_data);

This would test for the parameter "delete" being set to TRUE. If it is then a NULL would be
returned essentially deleting the shape. If "delete" is FALSE then it would return the un-
modified shape data, basically doing no operation to the data.

 Constant

Using a constant would have the same effect as defining the shape in the source layout
and not performing any operation on it. This would define it's location and shape
programatically rather than graphically. So defining a fixed-sized circle this way would
have something like the following in the dialog field:

[[0.0,0.0], [100.0, 0.0]]

Which would define a circle of radius 100 centered at the origin.

 Variables

This would be similar to the use of a constant, but would allow the values to be specified
by the user as component parameters. So a user-defined circle might look like:

[[center_x, center_y], [center_x + radius, center_y]]

where the user would supply the values for center (x,y) and radius at component insertion
time.

 Function

The most general purpose usage is to call a function. A simple example might look like:

modify_shape(_shape_data, length, width)

Advanced Design System 2011.01 - Graphical Cell Compiler

111

Where modify_shape is the user-written function. It receives three arguments: the current
(x,y) array of data points for the shape, and a length and width value which are
component parameters specified by the user at component insertion time.

 Return Value
The type of value returned by the function is specified in the User-Defined dialog by the
"Function returns:" radio buttons. This informs the compiler what is being returned and
what to do with it. The four choices are:

Shape is the value returned is simple shape data (and array of (x,y) points) and
should replace the current shape data for the shape being operated on.
Replace List is the value returned is a list of shapes (each being an array of (x,y)
points) and should replace the current list for the shape being operated on. This case
is used when the user-written function performed modifications of the existing list of
shapes but did not generate any new shapes.
Append List is the value returned is a list of shapes (each being an array of (x,y)
points) and should be appended to the current list for the shape being operated on.
This case is used when the user-written function is generating additional copies of the
shape being operated on and does not want to loose any existing list (perhaps
generated by a previous Repeat control).
Layer ID is the value returned is the new layer ID (integer value) to use when the
shape is created and inserted into the Layout.

There is one more very important issue to be aware of when deciding what the return type
is. If the user-defined function is making simple modifications to the (x,y) data points (as
in a stretch or similar action) then the resulting shape would be returned as type "Shape".
But if the function is adding or deleting (x,y) data points (as the Polar controller adds
points to a path) then the resulting shape must be returned as a "Replace List" or "Append
List".

The reason for this is that the Initial and Current shape data arrays must always be of the
same size (same number of (x,y) points). Several of the controls rely on this fact in
processing the shape. For example, in the Stretch control, it is comparing the Initial array
with the construction line to decide which points will be modified. If it decides that the
shape's fourth point is to be modified then there had better be a fourth point in the
Current structure to apply the modification to.

For those controls using both the Initial and Current arrays their size is checked during
initialization and an error is displayed if they aren't equal.

This also helps demonstrate why certain controls (like Stretch) should appear before other
controls (like Repeat or Polar). For more information see Defining Controls (gcc).

So if the user-defined function is modifying the (x,y) data points of a shape you should set
the return type to "Shape". But if the function is adding or deleting (x,y) data points then
you should set the return type to either "Replace List" or "Append List".

 Function Implementation

Advanced Design System 2011.01 - Graphical Cell Compiler

112

As already stated the user must supply the actual AEL function called by the User-Defined
control. The function my use any parameters the user wants including any of the pre-
defined ones listed above. the output must be either an (x,y) array of shape data points, a
list of shapes as described above, or a layer ID. What's in between is totally up to you.

If the function does not exist in the system at compile time then a warning message will
be issued by the compiler. This is fine as long as the function exists by the time the PAM is
executed. If it doesn't exist then executing the macro will generate an AEL error.

During development and testing of the function the best way to load it into the system is
by executing a load() command from the Command Line dialog (accessed from the main
window with the "Options/Command Line" menu pick). This allows you to load the AEL file
to test the function, then make changes to it and re-load it without the need to exit ADS.
See AEL (ael) for details on the load() command.

If you want the AEL function to be visible to the compiler to eliminate the warning
messages, it must be loaded into the system before the compile is done. The function
does not need to be complete at this time. In fact it can be a NULL function, that is, a
function definition with no actual code. Simply defining the function's name will be enough
to prevent the PAM compile warning. Of course the function must be fully implemented
when the PAM is inserted in order to get the desired results.

After the AEL function is completed and tested, you should make sure it's loaded each
time ADS is started. You can use the "USER_AEL" directive in the de_sim.cfg file (see the
AEL Guide for details). Basically, the procedure is:

First, edit your $HOME/hpeesof/config/de_sim.cfg file and add a line like this:

USER_AEL=$HOME/user.ael

which will load the file user.ael from your home directory. That file should be a list of
load() commands for all the AEL function you have written that you wish to load as part of

Advanced Design System 2011.01 - Graphical Cell Compiler

113

the system. It might look something like:

load("/users/brett/my_models/spiral.ael");

load("/users/brett/my_models/couple.ael");

load("/users/brett/my_models/square.ael");

fputs(stderr, "End Loading user.ael");

Obviously the path and file names can be anything you want such that the organization of
your PAM support code makes sense.

The fputs() line is simply a way to output a message to the ADS startup window as a sort
of verification that the file did run and load all the support functions. It can easily be
commented out once satisfied that everything is working the way you want.

Now each time ADS is started, the user.ael file will be executed which will load all the
other AEL files which define the various user-written functions needed.

 A Simple Example

This section provides a simple example of how to use a User-Defined control to perform an
action that would be very hard to do with the default controls. While the example may not
be very realistic, it does demonstrate how easy it is to extend the Graphical Cell Compiler
with user-written AEL code.

For this example we assume that you want to make an NxM grid of rectangles. But it's not
just a simple grid, you want it to look like a checker-board (every other shape is missing).

Starting with the source layout, add a simple rectangle with two construction lines for use
by the various controls:

Next add two Stretch controls to set the length and width of the rectangle:

Control: Stretch

 Direction: Both

 Length: length

 Offset: 50.0 mil

Advanced Design System 2011.01 - Graphical Cell Compiler

114

Control: Stretch

 Direction: Positive

 Length: width

 Offset: 50.0 mil

Then add a Repeat control (selecting the horizontal construction line) to build the grid:

Control: Repeat

 Direction: Both

 Parallel
Number: x_num
Distance: length

 Perpendicular
Number: y_num
Distance: width

If this model is compiled and inserted you'll get an x_num by y_num grid of rectangles
(size length by width) with no space between the individual shapes. If the fill-type is set to
filled for that layer it will look like one big rectangle.

Now add a User-Defined control to call an AEL function which will do the work of removing
the shapes needed to create the final structure.

Control: User-Defined

 Returns: List Replace

 Function: remove_some(x_num, y_num,
_shape_list)

The purpose of the user-written function remove_some() is to take the list of shapes
generated by the Repeat control, iterate over it removing the ones no longer needed, and
return the modified list. We pass the function three parameters: the X and Y dimension
using the same names as in the Repeat control, and the pre-defined variable _shape_list
which is the generates list of shapes for the rectangle.

An example of the code for remove_some() is:

defun remove_some(x, y, shapes)

{

decl i, j;

decl odd;

decl keep;

keep = list(); /* initialize the return list */

odd = 1; /* removing odd/even elements */

for (i=0; i<x; i++) { /* iterate over X axis */

 for (j=0; j<y; j++) /* iterate over Y axis */

 if ((j%2) != odd)

 keep = append(keep, list(nth(j*x+i, shapes)));

 odd = odd^1; /* toggle for the next column */

 }

return(keep); /* return reduced list */

}

The Repeat controller iterates over X (Parallel) and then Y (Perpendicular) which is a
Column Major Order. Therefore, we need to process the generated list the same way in
order to know which (x,y) rectangle is being considered for removal (that is, NOT to be

Advanced Design System 2011.01 - Graphical Cell Compiler

115

copied to the output list).

The final artwork created by the PAM as defined above would look something like:

Of course the parameters defined give full control over the size of the rectangles and the
number in each axis.

Advanced Design System 2011.01 - Graphical Cell Compiler

116

 Width Control
This section provides details on how to use the Width control to control the width attribute
on paths and height attribute on text. You can use the Width control to specify the width
of primitive shapes that have the width attribute.

The width attribute defines the thickness of certain shapes. Paths are the only shape with
width supported by the Graphical Cell Compiler at this time. Since the width attribute is
not affected by other controls (like Stretch) the Width control provides the only access to
change it.

While text does not have width (in the sense that paths do), the text height attribute is
basically the same concept and is also supported by the Width control. This means that
one can use the Width control to make absolute or relative changes to text height.

 Width Change
The Width Change parameter defines how you wish to apply the specified width to the
selected shape. If Absolute is selected, then all shapes associated with this control are set
to the specified value, ignoring the value they were created with.

If Relative is selected, then the specified value is added to the currently-defined shape's
attribute.
Again, this applies to width for paths and height for text. The illustration shows the
differences between Absolute and Relative width changes.

Advanced Design System 2011.01 - Graphical Cell Compiler

117

 Width
This parameter specifies the actual value the shapes are to be set to Absolute or modified
by Relative.
The results of the Width equation can be negative. This could make sense if the initial
shape had a specific value which needed to be reduced as part of the execution of the
PAM. But when all the width controls are done, the value being assigned to any specific
shape must be positive. A negative value is not allowed. The compiled macro forces this
condition by taking the computed width and operating on it with the max2() AEL function.
For paths the function is:

de_set_path_width(max2(computed_width, 0.0));

This way if the computed width happens to be negative, the value of 0.0 is used instead.

This further implies that if one is having trouble with shapes being generated with zero
width, make sure the width calculations are not going negative.

Since the width/height parameter is associated with, but still separate from, a given shape
(or shapes) it's value as modified by the Width control is independent of any other actions
performed on the shape (such as, stretch, repeat, etc.). This also implies that if a shape is
copied (by a Repeat or Polar control) that all the resulting shapes have the same
width/height. And since the value applies to all copies of a given shape it doesn't matter
whether the Width control is executed before or after a copy control.

Advanced Design System 2011.01 - Graphical Cell Compiler

118

 Viewing Controls

 View Controls Dialog Box
This dialog box (Macro > Edit/View) displays a scrolling list of all currently defined
controls in the order of execution. Use this dialog box to delete, modify, or change the
order of controls. Selecting a control highlights the shapes and control lines used in that
control.

Edit opens the control dialog box for the selected control so you can change parameter
values, change the shapes operated on by the control, or change the control line that the
control uses as a reference (see Editing a Control).

Cut removes the selected control from the list. If you do not paste the cut item back in
before you exit the Viewer dialog box, the control is deleted. Any control that you cut is
displayed in the Cut Buffer Contents field.

Paste inserts a cut control back into the list, in front of the selected control.

Detail displays the detailed settings for each control (see Control Details).

Compile is a shortcut to close the Viewer dialog, open the Compile dialog, and compile the
macro.

Cancel cancels only cut/paste modifications. After you accept a change in an individual

Advanced Design System 2011.01 - Graphical Cell Compiler

119

control's dialog box, that change can not be undone from the Control Viewer. Use the
individual control's Cancel button before you leave that dialog box.

 Control Details
When you click Detail in the View Controls dialog box, the program displays a list of the
currently defined controls that includes all of the settings for each control.

Because a control is not actually deleted when you cut it from the Viewer, the detail list
contains all controls defined when you opened the Viewer. When you dismiss the Viewer
(deleting any cut controls), the detail list updates.

The detail list does not automatically update as you make changes to control order or
control settings. To force an update without closing the Viewer, click Refresh .

Compile a shortcut to close the Viewer dialog, open the Compile dialog, and compile the
macro.

 Editing a Control
Use the View Controls dialog box to edit an existing control:

Select the desired control.1.
Click Edit .2.
When the definition dialog box opens for the selected control, edit the control3.
definitions. You can change parameter values, change the shapes operated on by the

Advanced Design System 2011.01 - Graphical Cell Compiler

120

control, or change the control line that the control uses as a reference
Click OK to accept the new settings.4.

Note
To cancel editing on a control, use the individual control's Cancel button before you leave that dialog box.
Remember, after you accept a change in an individual control's dialog box, that change can not be undone
from the Viewer; the Cancel button in the Viewer cancels only cut/paste modifications.

 Compile Shortcut
After the initial PAM has been defined, a very common use-model is:

Open the Viewer dialog.1.
Make various changes to the controls under development.2.
Exit the Viewer dialog.3.
Open the Compile dialog.4.
Save the design.5.
Compile.6.
Exit the Compile dialog.7.
Test the latest version of the PAM.8.

When operating in this mode, steps 3 through 6 are little more than busy-work. The
Compile button in the Viewer dialog performs these four steps for you, saving the extra
mouse clicks and getting the results of the compile without delay.

Advanced Design System 2011.01 - Graphical Cell Compiler

121

 Temporary Control Variables
A number of the controls have locally defined variables which are assigned by the control
while it is executing. These variables can be used in the equations defined for the controls
to make the calculations simpler.

The convention of a leading underscore (_) for global variables is the same as is used by
the ADS Analog RF Simulator (ADSsim).

 Polar Control
_angle As calculated by the Angle expression for the current step.
_radius For use in the Offset field only; as calculated by the Radius expression for
the current step.
_angle_start As calculated by the Start expression for the current step.
_angle_stop As calculated by the Stop expression for the current step.
_angle_step As calculated by the Step expression for the current step.

_angle_i Step number that increments from 0 to
.

 User-Defined Control
_cline_data A two-dimensional array of two points (as in [[x1, y1], [x2, y2]]) which
define the construction line (if included) for this control.
_shape_type The type of shape being operated on. One of the following pre-defined
AEL constants:
PAM_PATH_TYPE
PAM_POLYGON_TYPE
PAM_POLYLINE_TYPE
PAM_PORT_TYPE
PAM_TEXT_TYPE
_shape_data The current (x,y) data points for the shape being operated on.
_shape_init The initial (x,y) data points for the shape being operated on.
_shape_list The current list of sets of (x,y) data points (the result of a Repeat or
Polar control) for the shape being operated on.
_shape_layer The current layer ID of the shape being operated on.

Advanced Design System 2011.01 - Graphical Cell Compiler

122

 Second Spiral Example
While the model in the section First Spiral Example (gcc) generates a nice looking square
spiral, the model may not be one of the standard spiral models that would have simulation
data to go with it. This section takes the first spiral example another step and modifies it
to generate a more useful model.

The basic premise of the first model is that the vertex points computed along the spiral
are the vertex (corners) of the resulting square spiral, but a little adjustment is needed to
square things up. While this worked well, the model does have a couple of failings when
we try to use it for a real-world model. First, the adjustment math is rather complex.
Second, it is very hard to make adjustments to the end-points so that these line up on
edges or adhere to other model constraints.

To address this concern, a different geometry definition is explored. Instead of the
computed spiral points being the vertex points, the computed points are defined as points
on the sides of the square spiral. Then the vertex points are the perpendicular intersection
of two sides lying on two successive compute points.

 A Second Geometry Lesson
Once again we must consider geometry. We will start with two vectors of a given radius
and angle (r1,a1 and r2,a2). These vectors correspond to two of the computed points on
the spiral. We know the angle and radius of each one. The end of each line lies on one leg
of the final spiral, and the ends meet the leg at an angle of 90°. What we need to
compute is the vector r3,a3 to where these two sides intersect, and then the actual x,y
point. For a square spiral, several more of these angles will also be 90°, but we will not
assume that in this example, so we can create a general case that could be used to
generate a spiral of any number of sides.

Now we'll take this general case geometry and formalize it a bit so it is easier to see the
relationships between the various angles and sides. Note that even though it has been
drawn such that the r1,a1 vector is on the X-axis, this will not be true for the general
case, so we must take care in the assumptions that we make.

Advanced Design System 2011.01 - Graphical Cell Compiler

123

We can start with the known values and work to a solution for the r3,a3 vector and then
the values for (x,y):

The first given vector is of length and angle: r1,a1 .1.
The second given vector is of length and angle: r2,a2 .
This makes the angle between them 2.
.

The definition of cos() says that 3.
,
.

The definition of sin() says that 4.
, so
.
B is part of a right triangle, so 5.
.

6.
, so
. Substitute for j and we get
.

The definition of tan() says that 7.
, so
, which, substituting for k expands to
.

8.
. Substitute for a and n , and
. Substitute for A , and

We now have the two sides of the triangle that will give us the r3,a3 vector: r1 and m9.

. The definition of a triangle says that

, so
(using m from step 8).

Advanced Design System 2011.01 - Graphical Cell Compiler

124

And again,10.

,
(again using m from step 8). But that's only the angle between vector 1 and vector

3, the actual angle will be
.
So, for any given r1,a1 and r2,a2 we can use the calculations above (m from step 8,
r3 from step 9, and a3 from step 10) to generate an r3,a3 to the point of
intersection. There will need to be some special case handling for the end-points, for
example, making the final spiral start and stop on the first and last vectors of the
spiral (rather than being a point on the side).

 Using the Equations
The next question is how to represent all this in the polar control. We have rather long
equations based on the current and previous radius/angle vectors (implying the need to
save the current vector for the next iteration) as well as special case processing for the
first and last points. While it may be possible to do all this within the limits of the fields in
the polar control, it is much easier to do it as new functions defined in AEL and called from
within the polar control.

 Define Controls
We start by defining the initial controls needed to create the shape. Define a width control
to operate on the initial path:

Control: Width

Change: Absolute

Width: width

Next, define a polar control with the function calls in place. In the next section we will
define the actual functions in AEL. Define the polar control as:

Control: Polar

Delete Ends: True

Units: Radians

Start: 0.0

Stop: PI*2*turns

Step: PI/(sides/2); set_angle_info(0.0,PI*2*turns,PI/(sides/2))

Radius: init_radius + (width + space) * _angle / (2*PI)

X Offset: compute_x(_angle_i, _radius, _angle)

Y Offset: compute_y(_angle_i, _radius, _angle)

We set the variables start , stop , and step the same way they were set in the spiral
example in the section First Spiral Example (gcc) The one addition to the angle definition
section is the call to the function set_angle_info() . The purpose of this function is to pass
these three values to the AEL code so they can be saved for use in future calculations.

 Create an AEL File

Advanced Design System 2011.01 - Graphical Cell Compiler

125

We must create an AEL file to hold the function definitions that we need. The AEL file
begins with some global variables and the definition of set_angle_info() .

decl angle_start, angle_stop, angle_step;

decl angle_n;

decl r1; // last saved radius

decl a1; // last saved angle

// r2 // current radius from the polar controller

// a2 // current angle from the polar controller

decl r3; // new radius

decl a3; // new angle

**

defun set_angle_info(start, stop, step)

{

angle_start = start;

angle_stop = stop;

angle_step = step;

angle_n = (angle_stop - angle_start) / angle_step;

r1 = a1 = 0;

}

The function saves the three value, computes the number of angle steps, and clears the
last radius/angle values (which will be used later). We add to this AEL file later.

 Calculate the Radius
The radius calculation is basically the same as used in the previous example. Since the
radius points lie on the sides rather than on the vertex points (corners) we do not need to
do the adjustments that were required in the previous example (starting at A Short
Geometry Lesson (gcc)). In addition, we have added a new variable (init_radius) so we
can control the radius of the first turn and therefore the overall size. Also note that in
order for the init_radius variable to work as intended, the original graphics must be
centered on the origin (0,0) which is the center of rotation for the polar control. This way,
any value for init_radius is in effect moving the initial shape off the origin before starting
to sweep it in the spiral form.

 Enter the X and Y Offsets
We now have a computed radius and angle (r2,a2) so we can proceed with the
adjustments defined by the equations above. We will use the X Offset and Y Offset fields
to make the needed function calls. Of course, since the offset fields provide a delta to
apply to the computed radius and angle, we will actually have to return the difference
between the r2,a2 and r3,a3 vectors in the function calls. We will also have to convert
from polar to cartesian coordinates since the vectors are in polar coordinates but the X
and Y Offset are in cartesian coordinates. Given a radius and angle the basic conversion
formulas are:

But since we want the difference between the two vectors, we get:

Advanced Design System 2011.01 - Graphical Cell Compiler

126

As shown above in the polar control, we call two functions: compute_x() and compute_y()
. As parameters we pass the angle count (which iteration we are on) and the r2,a2 vector.
The support code that we will now add to our AEL file appears on the following page.

**

defun compute_x(idx, r2, a2)

{

decl x;

decl m;

if (idx == 0) // first point

 return(0);

if (idx == angle_n + 1) // last point

 return(r1*cos(a1) - r2*cos(a2));

m = r2*sin(a2-a1)-(r1-r2*cos(a2-a1))*tan(PI/2-a2+a1);

r3 = sqrt(r1*r1+m*m);

a3 = atan(m/r1)+a1;

x = r3*cos(a3) - r2*cos(a2);

return(x);

}

defun compute_y(idx, r2, a2)

{

decl y;

if (idx == 0) { // first point

 r1 = r2;

 a1 = a2;

 return(0);

 }

if (idx == angle_n + 1) // last point

 return(r1*sin(a1) - r2*sin(a2));

r1 = r2;

a1 = a2;

y = r3*sin(a3) - r2*sin(a2);

return(y);

}

The compute_x() function is called first. It handles the special case code for the first and
last points, and then computes m , which is then used to compute the r3,a3 vector. We
then convert to a delta-X for return to the polar control. The compute_y() is called next.
It, too, checks for the first and last points, then saves r2,a2 as r1,a1 (previous vector) for
the next iteration. Finally, it converts the delta-Y for return to the polar controller.

Place the AEL file containing the code for the three defined functions (set_angle_info() ,
compute_x() , and compute_y()) in the file user_defined_fun.ael in the
$HOME/hpeesof/de/ael or $HPEESOF_DIR/custom/de/ael directory so that these functions
are loaded at run-time and are available when the model is inserted. Placing the ael file in
either of these directories will require an additional configuration var setting:

SITE_AEL in $HPEESOF_DIR/custom/config/de_sim.cfg pointing to
$HPEESOF_DIR/custom/de/ael

Advanced Design System 2011.01 - Graphical Cell Compiler

127

USER_AEL in $HOME/hpeesof/config/de_sim.cfg pointing to $HOME/hpeesof/de/ael

 The Results
Here is an example inserted with the following parameters:

init_radius = 20.0 mil

sides = 4

turns = 3

width = 25.0 mil

space = 15.0 mil

Two additional polar controls were added to this model to help demonstrate how the
geometry works. The first addition is a simple smooth spiral:

Control: Polar

Delete Ends: True

Units: Radians

Start: 0.0

Stop: PI*2*turns

Step: PI/16.0

Radius: init_radius + (width+space) * _angle / (2*PI)

X Offset: 0.0 mil

Y Offset: 0.0 mil

The second is the same simple spiral but with only four sides, which was the basis of the
model in the section First Spiral Example. (gcc)

Control: Polar

Delete Ends: True

Units: Radians

Start: 0.0

Stop: PI*2*turns

Step: PI/(sides/2)

Radius: init_radius + (width + space) * _angle / (2*PI)

X Offset: 0.0 mil

Y Offset: 0.0 mil

Advanced Design System 2011.01 - Graphical Cell Compiler

128

 Create a Rectangular Spiral
Suppose we do not want a square spiral, but rather a rectangular spiral where we can
control the size of both the major and minor axis. The previous examples use the basic
idea of making the radius a function of angle so that as the angle increases so does the
radius. In other words, if
r = (constant) produces a circle, then
r = f(angle) produces a spiral.

We added additional math to normalize the angle, provide control over the size of the
spiral (as a function of width and space), and control the initial size of the spiral (by using
init_radius).

But if instead of a circle as the basic fundamental shape, what if we used an ellipse? We
could then modify it to increase its two axis as a function of angle as we did with the
circle.

The polar definition for an ellipse is:

where t = theta (an angle)

 Create an Ellipse

Start by simply implementing the above to create a simple ellipse.

Advanced Design System 2011.01 - Graphical Cell Compiler

129

Control: Polar

Delete Ends: True

Units: Radians

Start: 0.0

Stop: PI*2*turns

Step: PI/16.0

Radius: sqrt(a*a*b*
b/(a*a*sin(_angle)*sin(_angle)+b
*b*cos(_angle)*cos(_angle)))

X Offset: 0.0 mil

Y Offset: 0.0 mil

where:

turns = 1

a = 100.0 mil

b = 50.0 mil

 Make an Elliptical Spiral

As we said above, a circle is:
r = (init_radius)
or
r = f(init_radius)
Where the function f does not actually modify the constant. Next we modified the constant
so that it would increase in size as a function of the angle:

As stated above an ellipse is a more complicated function in terms of a and b :
r = f(a, b)
Where a and b serve the same purpose as init_radius . So, if we increase them as a
function of angle in the same way, we should get the elliptical spiral we want:

,

where f() is the above definition of an ellipse.
So now we have:

Advanced Design System 2011.01 - Graphical Cell Compiler

130

Control: Polar

Delete Ends: True

Units: Radians

Start: 0.0

Stop: PI*2*turns

Step: PI/16.0

Radius: sqrt(pow(a+(width+space)*_angle/(2*PI),2)*
pow(b+(width+space)*_angle/(2*PI),2)/
(pow(a+(width+space)*_angle/(2*PI),2)*
pow(sin(_angle),2)+
pow(b+(width+space)*_angle/(2*PI),2)*
pow(cos(_angle),2)))

X Offset: 0.0 mil

Y Offset: 0.0 mil

where:

turns = 1

a = 100.0 mil

b = 50.0 mil

width = 25.0 mil

space = 25.0 mil

 Reduce the Number of Sides

Next we reduce the number of sides to four, and we have our points on the sides of the
spiral.

 Add Function Calls

Advanced Design System 2011.01 - Graphical Cell Compiler

131

Control: Polar

Delete Ends: True

Units: Radians

Start: 0.0

Stop: PI*2*turns

Step: PI/2.0; set_angle_info(0.0, PI*2*turns, PI/2)

Radius: sqrt(pow(a+(width+space)*_angle/(2*PI),2)*
pow(b+(width+space)*_angle/(2*PI),2)/
(pow(a+(width+space)*_angle/(2*PI),2)*
pow(sin(_angle),2)+
pow(b+(width+space)*_angle/(2*PI),2)*
pow(cos(_angle),2)))

X Offset: compute_x(_angle_i, _radius, _angle)

Y Offset: compute_y(_angle_i, _radius, _angle)

Advanced Design System 2011.01 - Graphical Cell Compiler

132

 Basic PAM Example
 Example: Creating a Multi-Coupled Line
The information in this example is presented with the assumption that you already know
how to insert and work with shapes in a Layout window. If you do not, refer to the section
Defining Artwork (gcc)

The Graphical Cell Compiler uses primitive graphical shapes to build AEL macros that
create models. For this example, the source artwork comprises a rectangle and two pins
(connectors). You add two control lines (construction lines) and define three controls:

A stretch control for length that acts on the rectangle and the two pins.
A stretch control for width that acts only on the rectangle.
A repeat control for the number of lines to create that acts on the rectangle and the
two pins.

Note
The section Code Walkthrough (gcc) contains a walkthrough of the code that is generated to
produce this model.

The steps to create a multi-coupled line are:
Step 1 Defining the Artwork
Step 2 Defining the First Stretch Control
Step 3 Defining the Second Stretch Control
Step 4 Defining a Repeat Control
Step 5 Viewing the Defined Controls
Step 6 Compiling the Macro
Step 7 Defining Parameter Default Values
Step 8 Using the New Component

 Step 1 Defining the Artwork

The first step in the process is to define the source artwork.

In the Main window, open a new project (File > New Project).1.
In the new project, open a Layout window (Window > Layout).2.
Using the relative cursor readout (Differential coordinates) displayed at the bottom of3.
the Layout window, insert a 100 x 50 mil rectangle (Insert > Rectangle).
Add two ports, one at the each end of the rectangle (Insert > Component > Port)4.
and place two construction lines through the center of the rectangle, one horizontal
and one vertical (Insert > Construction Line). Construction lines provide a
reference for the controls that you define.

Advanced Design System 2011.01 - Graphical Cell Compiler

133

 Step 2 Defining the First Stretch Control

Next, define a stretch control for length that acts on the rectangle and the two pins.

Select the rectangle, both ports, and the vertical construction line.1.

Select Macro > Stretch to open the Stretch Control Definition dialog box. Notice2.
that the Stretch Orientation is shown as Positive, with respect to the vertical
reference line.

Select Both so that the stretch orientation goes both positive and negative. This3.
produces a symmetrical stretch on each side of the reference line.
In the Distance field, enter the word length to define the name of the component4.
parameter that adjusts the symmetrical stretch of the rectangle.
In the Offset field, enter 100.0 mil.5.
Offset compensates for the original size of the shape, making it possible for you to
create a PAM using a shape with some size (so it is easy to work with), and then use
the PAM without needing to know the initial size of the shape. In this example, you
are creating a PAM using a rectangle of length 100. When you set the offset at 100,
you are offsetting the original length. Then when you use the PAM and enter a length
of 50, you get a rectangle with a total length of 50 rather than 150.
Click OK to accept the settings.6.

Note
For details on the Stretch control, see Stretch Control. (gcc)

 Step 3 Defining the Second Stretch Control

Select the rectangle and the horizontal construction line.1.

Advanced Design System 2011.01 - Graphical Cell Compiler

134

Select Macro > Stretch.2.
Choose the Stretch direction Both to produce a symmetrical stretch on each side of3.
the reference line.
In the Distance field, enter the word width.4.
In the Offset field, enter 50.0 mil.5.
Click OK to accept the settings.6.

 Step 4 Defining a Repeat Control

Now you set a repeat control for the number of lines to create for acting on the rectangle
and the two pins.

Select the rectangle, both connectors, and the vertical construction line.1.

Select Macro > Repeat to open the Repeat Control dialog.2.

Advanced Design System 2011.01 - Graphical Cell Compiler

135

Using the Repeat Control Definition dialog, you can define parameters that duplicate
the shape. The selections in the Repeat Direction area define the direction in which
copies of the shape are placed:

Parallel places copies parallel to the selected reference line.
Perpendicular places copies perpendicular to the selected reference line.
In this case, leave Parallel selected.

In the Number of Components field, enter the word number to define the component3.
parameter that controls the number of times the shape is duplicated.
In the Repeat distance field, enter width+space to create the component parameter4.
space.
The repeat distance is the distance from the beginning of one copy of the shape to
the beginning of the next (including the space between the shapes).

Caution
When defining a component parameter, do not use the word step or any other word that AEL
recognizes as a variable/reserved word. Using such a word generates an error when you try to use
the PAM. For more information, see GCC Error Messages (gcc) and AEL (ael).

Click OK to accept the settings .5.

Note
For details on this control, see Repeat Control. (gcc)

 Step 5 Viewing the Defined Controls

Advanced Design System 2011.01 - Graphical Cell Compiler

136

You can view the contents of the controls that you defined, as well as the detail of each
control.

Select Macro > View/Edit to open the View Controls dialog box.1.

The three controls you set in the previous steps are displayed in the View Controls
dialog: two stretches in both directions (with respect to the reference line) and a
repeat in the Parallel direction (with respect to the reference line).
The program executes the controls in the order in which these are listed in this
dialog. Selecting a control activates the editing capabilities. In this example, leave
the controls as set.
Select Detail to open the Detail window. Each control is listed, along with the defined2.
parameters.

Advanced Design System 2011.01 - Graphical Cell Compiler

137

In the Detail dialog, click OK to dismiss the dialog.3.
In the View Controls Dialog box, click OK to dismiss the dialog.4.

Caution
Always define Stretch controls first, then define Repeat controls. After you have completed this
example, go back and switch the order of the controls (using Cut/Paste in the View Controls dialog).
Then recompile and experiment with the modified component to see what happens when a shape is
repeated before it is resized (stretched). Because of the way the program handles copies, you can
see duplicates of the original rectangle. To stretch duplicates, stretch the original, then duplicate the
stretched original. For more information, see Defining Controls. (gcc)

Note
For details on the View Control dialog box, see the section Viewing Controls. (gcc)

 Step 6 Compiling the Macro

After you have defined the controls, you can compile the macro.

Several names are associated with a PAM:

Design name is the name of the source design; that is, the name of the layout in
which you create the source artwork.

Output file name is the name used for the AEL file that defines the macro. The
default name is < design name >_art.ael.

Model name is the name that you select from a library to use the macro in a
new layout. The default model name is < design name >.

To compile a macro:

Advanced Design System 2011.01 - Graphical Cell Compiler

138

Select File > Save Design to save the source design in the Layout window.1.

Note that this does not save the PAM. The Compile Messages area displays the
message:

Design saved as: < path >/< design name >.
Select Macro > Compile to open the Graphical Cell Compiler dialog .2.
Select Compile.3.

The Compile Messages area displays the progress and results as the PAM compiles.

Advanced Design System 2011.01 - Graphical Cell Compiler

139

Note
For details on this dialog box, see the section Compiling a Macro. (gcc)

 Step 7 Defining Parameter Default Values

After you have compiled the macro, you can set the parameter default values and save
the macro.

In the Graphical Cell Compiler dialog box, select Design/Parameters to open the1.
Design Definition dialog.

Advanced Design System 2011.01 - Graphical Cell Compiler

140

The Model Name that you defined in the PAM Compiler dialog box appears as the
Name and as the Component Instance Name. A description is provided automatically,
as is the default library name for PAMs. The name and type of artwork are entered
automatically under Artwork.
Select the Parameters tab. The parameters you defined in a previous step are listed2.
in the Select Parameter field.

The length parameter is selected. In the Default Value field, enter 100.0 mil.3.

Advanced Design System 2011.01 - Graphical Cell Compiler

141

Select the parameter width, and in the Default Value field, enter 40.0 mil.4.

Select the parameter number, and in the Default Value field, enter 2.5.
In the Parameter Type field, select Unitless from the drop-down list.6.

Note
If this field is not specified as unitless, the model may not appear when you try to use the PAM.

Select the parameter space, and in the Default Value field, enter 25.0 mil.7.

Advanced Design System 2011.01 - Graphical Cell Compiler

142

Select Save AEL file, then click OK to save the AEL file.8.

Click OK to close the Design Definition dialog box.9.
Click OK to close the Graphical Cell Compiler dialog box.10.

Note
For details on this dialog box, see the section Compiling a Macro. (gcc)

 Step 8 Using the New Component

Now that you have created the new component (PAM), you can use it in a layout.

In the Main window, open a new layout window (Window > New Layout).1.
In the new Layout window, choose Insert > Component > Component Library.2.
In the Library List dialog box, select Compiled Artwork Macros to view the3.
Component Library List. The component you have just defined is listed.

Advanced Design System 2011.01 - Graphical Cell Compiler

143

Hint
For a shortcut, you can type the component name into the component history pulldown on the
toolbar.

Select the component. If the Edit Component Parameters dialog opens, click OK to4.
accept the default parameters.

Move the cursor to the Layout window and place the component. Then cancel the5.
command by clicking the Cancel Command button on the tool bar.

Close the Component Library dialog.6.

	 Building Components
	 Code Walkthrough
	 Compiling a Macro
	 Compile Dialog Box
	 Defining Component Parameter Defaults

	 Configuration File Options
	 First Spiral Example
	 Create the Source Layout
	 Define a Polar Control
	 Edit the Source Design and Check the Effects
	 Remove the Ends of the Path
	 Set the Spiral for Out, Twice Around
	 Normalize Angle
	 Increase the Step Size
	 Add a Rotate/Move/Mirror Control
	 A Short Geometry Lesson
	 Use the More Accurate Equation for Radius
	 Add an Offset
	 Include the Port
	 Add a Polar Control for the Port
	 Replace the Constants with Parameters
	 Simplifying Long Equations

	 GCC Error Messages
	 Syntax Errors
	 Semantic Errors
	 Logic Errors
	 Run-Time Errors
	 Macro Error Messages

	 Getting Started with the Graphical Cell Compiler
	 GCC Examples
	 Graphical Cell Compiler Flow Chart
	 Macro Menu
	 Defining Artwork
	 Experimenting with Parameter Values

	 Glossary for Graphical Cell Compiler
	 Hints and Tricks
	 Selection and Control Definition
	 Controlling Pin Numbers
	 Testing for Minimum and/or Maximum Values
	 Advanced Value Testing and Error Reporting
	 Printing Shape Data
	 Define Parameter Order
	 Center of Rotation
	 Disable Controls
	 Multi-Model Drivers

	 Parameterized Artwork Macro (PAM) Controls
	 Contents

	 Defining Controls
	 Control Precedence
	 Theory of Operation
	 Using Control Lines
	 Defining Parameters
	 Controlling Multiple Shapes on Different Layers

	 Stretch Control
	 Stretch Direction
	 Stretch Orientation
	 Moving a Shape with a Stretch
	 Distance
	 Offset
	 Shape Response

	 Repeat Control
	 Repeat Direction
	 Number of Items
	 Repeat Distance

	 Rotate-Move-Mirror Control
	 Rotation Angle
	 Move
	 Mirror
	 Control Order

	 Polar Control
	 Angle Sweep
	 Radius and Incremental Offset
	 Shape Response
	 Using Paths
	 Delete End-Points
	 Using Variables in the Radius & Offset Parameters

	 User-Defined Control
	 Parameters
	 Function Call
	 Return Value
	 Function Implementation

	 Width Control
	 Width Change
	 Width

	 Viewing Controls
	 View Controls Dialog Box
	 Control Details
	 Editing a Control
	 Compile Shortcut

	 Temporary Control Variables
	 Polar Control
	 User-Defined Control

	 Second Spiral Example
	 A Second Geometry Lesson
	 Using the Equations
	 Define Controls
	 Create an AEL File
	 Calculate the Radius
	 Enter the X and Y Offsets
	 The Results
	 Create a Rectangular Spiral

	 Basic PAM Example
	 Example: Creating a Multi-Coupled Line

